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ABSTRACT 

Single-storey systems with different hysteretic characteristic are subjected to impulse-type short 

duration and long duration earthquake records to investigate the effects of hysteretic behaviour and 

ground motion characteristics on the seismic response. EPP, bilinear, Takeda, SINA, and flag-shaped 

hysteretic models loops are considered and an energy approach is taken to explain the inelastic 

behaviour. The first part of the work is based on analyses of the single-storey systems without any 

torsion, however; torsional irregularity is considered in the later analyses. 

It is shown that structures with the same backbone curve, but different hysteretic characteristics, tend 

to experience the same maximum response under short duration earthquake records, where there is 

one major displacement excursion. The likelihood of further displacement in the reverse (i.e. 

negative) direction is characterized using energy methods and free vibration analyses along with a 

new proposed ñoscillation resistance ratio (ORR)ò are employed to improve the understanding of the 

seismic response. Hysteretic models with low ORR, such as SINA and flag-shaped, are shown to 

have a greater likelihood of higher absolute displacement response in the negative direction 

compared with those with fatter hysteretic loops. The understanding of the response in terms of 

energy reconciles some differences in the ability of initial stiffness versus secant stiffness based 

methods to predict peak displacement demands with account for different ground motion 

characteristics. 

The same peak displacements in the primary direction was also observed for structures with 

stiffness/strength eccentricities under an impulse-type earthquake record. However, during 

unloading, the elastic energy stored in the out-of-plane elements is released causing greater 

displacement on the weak side in the reverse direction. 

 

INTRODUCTION  

Damage to structural elements in yielding building systems 

subjected to earthquake shaking is related to the deformations 

they experience. Design is generally conducted so that the 

deformation (and hence damage) demands are less than the 

damage capacity for the limit state and shaking level 

considered. Two simple empirical approaches are commonly 

used as the basis for prediction of structural displacement 

demand by practitioners in design. Neither approach has a 

strong fundamental basis in the actual behaviour. They are 

applied to regular and slightly irregular single and multi-storey 

structures. They were developed from the response of yielding 

single-degree-of-freedom (SDOF) systems from elastic 

response spectra characteristics. 

The first, which is commonly used in common design 

standards, computes displacements of structures based on their 

initial stiffness. The method is fundamentally independent of 

the structure unloading and energy dissipation characteristic. 

The second approach is based on the structure secant stiffness 

and hysteretic damping. The original concept was that at the 

peak displacement the structure oscillates with equal 

magnitude in both directions (which is seldom true in reality). 

This, in its fundamental form, the peak response decreases 

with increased in hysteretic loop energy dissipation. This 

approach is more often used for structures with more pinched 

hysteretic behaviour. Both approaches have been calibrated 

for typical structural types and earthquake records to 

reasonably estimate seismic displacements. Nevertheless, 

differences in response estimation exist as a result of the 

fundamental assumptions, the type of earthquake record used, 

and the specific calibration performed.  

It may be seen from the discussion above that while 

satisfactory empirical methods exist to estimate the 

displacement response for design, these methods do not have 

a strong fundamental basis. For good design, it is desirable that 

a rational understanding of behaviour be developed based on 

the response of single-storey structures subject to records of 

different types that can be applied to irregular and multi-storey 

structures. 

This paper seeks to address these issues by seeking answers to 

the following questions: 

1. What are the displacements of single storey structures with 

the same backbone curve but different hysteretic 

characteristics subject to impulse records? 

2. What are the displacements of these structures subject to 

realistic earthquake records? 

3. Can a simple method be developed to understand the 

response of structure with different hysteresis loops 

considering the shaking type? 

4. How do the concepts developed relate to single storey 

structures subject to torsional deformation?
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Initial Stiffness and Secant Stiffness Based Displacement 

Prediction Methods 

Initial stiffness based methods are based on the assumption 

that the inelastic response may be predicted from the elastic 

response considering a modification for ductility and structural 

period. Two widely known relationships which estimate 

inelastic displacement based on just the initial stiffness of the 

structure are the equal displacement assumption (EDA) and 

the equal energy assumption (EEA) [1]. For medium to long 

period structures, it is often assumed in design that the inelastic 

displacement is equal to the displacement of an equivalent 

elastic system with the same initial stiffness and therefore R = 

µ, where R is the ratio of the elastic force to yield strength and 

µ is the ratio of the ultimate displacement to the yield 

displacement (Figure 1), which is known as the EDA. For 

shorter period structures, the inelastic displacements are often 

larger than elastic displacements, which means R < µ. 

Newmark and Hall observed that the EEA is applicable to 

moderately short period structures, which leads to 

2 1R m= - [2]. EEA states that the monotonic loading 

energy (please see Figure 13) for elastic and elastic-perfectly-

plastic structures is the same when subjected to the same 

seismic event. FEMA 356 [3] introduces an empirical factor 

(the C1 in Equation (3-15)) to modify the displacement 

calculated for the linear response to the inelastic response for 

short period structures [3]. R-m -T relationships have been 

investigated by many people including Priestley et al. [4], 

MacRae [5], Miranda et al. [6]. Miranda et al. discussed and 

evaluated the accuracy of these R-m-T relations in detail [6]. 

The displacement demand on an inelastic system may be 

affected by the hysteretic characteristics of the structural 

elements [7]. According to FEMA 356, for structures with low 

energy dissipation such as pinched hysteretic structures (e.g. 

rocking structures), EDA may underpredict the actual 

displacements so modifications have been proposed to predict 

the displacement demands better (i.e. the C2 factor used in 

Equation (3-15) to represent the effect of pinched hysteresis 

shape [3]). 

 

Figure 1: Illustration of the equal displacement 

assumption. 

The idea of using an elastic substitute structure was first 

introduced by Jacobsen [8]. His approach, also followed by 

Gulkan et al. [9], is based on the concept that the energy 

absorbed by the hysteretic cyclic response of a yielding 

structure in its steady state is equal to the energy dissipated by 

the equivalent viscous damping (EVD) of a substitute 

structure, xhyst, with an elastic stiffness equal to the secant 

stiffness at the peak displacement. This is expressed in 

Equation ( (1). This approach is used in documents such as 

ATC-40. It provides procedures for the seismic evaluation and 

retrofit of concrete buildings [10]. 
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where,  ɝ0 = initial elastic damping ratio; 

Ahyst = complete stabilized hysteresis loop area, the hatched 

area shown in Figure 2; 

Am = rectangular area within the maximum force, Fm, and 

displacement, Dm as shown in Figure 2. 

 

Figure 2: Hysteretic area for EVD calculation. 

Equation ( (1)  resulted in displacements close to those 

predicted by time history analysis for systems with pinched 

hysteretic behaviour, such as those using the Takeda loop, but 

often underestimated the displacement of systems with high 

energy dissipating capacity such as the bilinear model for 

which the initial stiffness proportional method was found to be 

better for fatter hysteretic loops [11]. In order to improve the 

accuracy of the substitute structure method, Priestley et al. [11] 

used the results of non-linear time-history analyses (NTHA) to 

calibrate EVD values for different hysteretic models to predict 

the same peak displacement. Therefore, this approach is 

empirical and its accuracy will depend on the characteristics 

of the ground motions used in calibration studies compared to 

those expected at the site. Indeed, researchers such as Pennucci 

et al. [12] and Stafford et al. [13] showed that spectral shape 

and earthquake magnitude would also affect calibration 

results. 

In Priestleyôs approach, the equivalent damping for structures 

with fat hysteretic loops become similar indicating that for 

these structures the hysteretic loop unloading characteristics 

do not affect the peak response. For example, the effect of 

damping for Takeda and bilinear hysteretic loops are almost 

identical [7]. This is consistent with the initial stiffness-based 

concepts. 

From the discussion above, it would appear that the success of 

a given approach would greatly depend on the characteristics 

of the imposed shaking, because this affects the calibration. 

Both the initial and secant stiffness based approaches have 

therefore been modified to provide results that are more 

realistic. Sullivan showed that the choice of properly 

calibrated displacement prediction methods does not affect the 

design strength significantly so long as the designer has made 

consistent assumptions [14]. 

METHODOLOGY  

A numerical model of a single-storey structure with various 

hysteretic characteristics is subject to earthquake records 

causing different shaking response to quantify displacement 

response and to develop new concepts affecting peak response 

estimation. A full parametric study is not undertaken, as it is 

not necessary to satisfy the aims stated in the introduction. 
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Numerical Model 

A numerical model of a single-storey structure, shown in 

Figure 3, is employed for analyses in this work. The model is 

subjected to an impulse load as well as ground shaking and the 

results are used to explain the inelastic response of the 

oscillators with different hysteretic behaviour. The structure is 

assumed rectangular in plan with width, B, of 24 m and length, 

L, of 40 m. Two seismic force resisting system (SFRS) are 

considered in each direction. The diaphragm is assumed rigid 

and the total mass, M, and mass rotational inertia, Irot, of the 

system are lumped at the centre of mass, CM, which is at the 

centre of the rectangular plan. As shown in Figure 3, the 

structure is shaken only in the y direction. 

In the first stage of this work, the total stiffness and strength of 

the system is divided equally between SFRSs in the y 

direction, which are 14 m away from CM. The SFRSs in the x 

direction are both of the same stiffness and strength and placed 

at a distance of 9 m from CM. Therefore, there is no 

stiffness/strength eccentricity and this structure acts like a 

SDOF system under excitation in the y direction even though 

it has more than one element (i.e. the translation of the rigid 

floor in the y direction is the only degree of freedom of the 

system). 

The system total initial lateral stiffness, Ki, was calculated 

according to Equation (2) for the specified mass, M, to obtain 

a fundamental period, T, of 1.0s. The mass specified is not 

important as it does not affect the behaviour, but the value 

chosen is given in Table 2. A structure with a period of 1s may 

be representative of a 4~5 storey building structure designed 

in high seismic regions and selected as an illustrative example. 

2
2
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  (2) 

The total system lateral yield strength, Fy, was specified such 

that the ratio of the total lateral strength to the total seismic 

weight of the system, Cy, was 0.1 according to Equation 

(Error! Reference source not found. where g is the 

acceleration of gravity. 

( )y yF C M g= ³
   (3) 

According to NZS 1170.5, the standard used in New Zealand, 

to calculate the force and deformation demands on structures 

from earthquake shakings [15], Cy = 0.1 roughly represents a 

medium range period (e.g. T å 1 s) ductile structure (e.g. m å 
4) in a seismic region (e.g. Z å 0.4).Table 1 lists the parameters 

defining the SDOF system. 

Table 1: SDOF System parameters. 

Parameter Value Unit  

Mass (M) 4.00×106 N.s2/m (i.e. kg) 

Period (T) 1.00 s 

Total initial stiffness (Ki) 1.58×108 N/m 

Total yield strength (Fy) 4.00×106 N 

Systems in which the centre of mass, CM, does not coincide 

with the centre of stiffness/strength experience torsional 

response in addition to pure translation. The centre of stiffness, 

CR, is defined as the location where if a lateral load is applied, 

in the elastic range of behaviour the system does not twist. The 

centre of strength, CV, is defined as the location where if a 

lateral load is applied to the system, there is no torsional 

moment on the system in the inelastic range of behaviour [16]. 

The stiffness eccentricity, eR, and the strength eccentricity, eV, 

are defined as the distance between CM and CR and CV 

respectively. 

The second stage, considers a single-storey structure with 

strength/stiffness eccentricity to investigate the effect of 

hysteretic models on seismic response of torsionally irregular 

systems. The stiffness and its companion strength 

eccentricities are eR = 0.15L and eV = 0.1L respectively (Figure 

3). The stiffness/strength eccentricity for the excitation in the 

y direction is introduced by assigning larger stiffness and 

strength to the right hand side SFRS. However, the system is 

still symmetric in the x direction. 

The stiffness and strength eccentricities for the excitation in 

the y direction can be found using Equation ((2) and ((3) 

respectively. 
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where xi = distance of the element i from CM in the x 

direction; 

ki = stiffness of element i in the y direction; 

Vi = strength of element i in the y direction. 

Mass rotational inertia, Irot, is defined as the required torsion 

to cause a unit angular acceleration and can be found about 

centre of mass using Equation ((4). 

 

 

Figure 3: Schematic 3D view of the case study structure. 
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2

rotI r dm=ñ  
 (4) 

where  dm = infinitesimal mass; 

r = polar distance of the dm from the centre of mass. 

Assuming the M is uniformly distributed over the plan, Irot of 

a rectangular plan can be simplified as shown below. 

2 2

12
rot

B L
I M

+
=   (5) 

The total translational stiffness and strength of the system in 

both directions are identical. The torsional stiffness of a 

structure in which all SFRSs are placed at distance of dx and 

dy from CM in the x and y directions respectively, can be 

calculated using Equation ((6). 

( ) ( )2 2 2 2

rot i x Rx i y RyK K d e K d eè ø è ø= ³ - + ³ -
ê ú ê ú 

 (6) 

Please note that the eccentricity for the excitation in the x 

direction, eRy, is zero in Figure 3. 

The configuration shown in Figure 3 results in a system with 

an uncoupled torsional to translational natural frequency ratio, 

ɋ0, of 1.23. The ɋ0 is defined as ɤɗ / ɤy [17]. The ɤɗ and ɤy 

are the uncoupled torsional ([Krot,CM / Irot]0.5) and translational 

([Ki / M]0.5) natural frequencies respectively. The Krot,CM is 

calculated about the centre of mass to keep ɋ0 independent of 

the eccentricity of the system. The parameters that define the 

torsional irregularity in the single-storey system are listed in 

Table 2. 

Table 2: Parameters to define the torsional irregularity. 

Parameter Value Unit  

Strength eccentricity (eV) 4.00 m 

Stiffness eccentricity (eR) 6.00 m 

Mass rotational inertia (Irot) 7.25×108 N.s2.m (i.e. kg.m2) 

Rotational stiffness (Krot) 3.81×1010 N.m 

Hysteretic Models  

For systems under strong earthquake shaking, the force 

demand may exceed the system yield strength, Fy, and from 

then on the unloading and loading characteristic of the system 

are needed in addition to its initial stiffness (i.e. period of 

vibration) and damping to evaluate the seismic response. Five 

different hysteretic models are employed in this study as 

described in Figure 4 and Table 3. 

The first model is elastic-perfectly-plastic (EPP). It is 

characterized just by an initial stiffness, ki, and yield strength, 

Fy. EPP is the simplest model and assumes the same loading 

and unloading stiffness without incorporation of deterioration 

or strain hardening. The EPP model has characteristics that 

represent some isolation systems and some structural systems 

with friction connections [18]. The second hysteretic model is 

bilinear, which is similar to EPP except that strain hardening 

is incorporated in this model. The post-yield stiffness ratio of 

r = 0.05 is assigned. The bilinear model with different values 

for r represent the response of steel structures and lead-rubber 

bearing type of base-isolated systems [11]. The Takeda model 

is commonly used to represent the behaviour of reinforced 

concrete structures [19]. a and b are the parameters defining 

the unloading and reloading characteristic of Takeda model. 

Structural systems with pinching characteristics such as 

reinforced concrete structures that are not detailed properly for 

ductile behaviour can be represented using the SINA model 

[20]. The SINA loop suffers from significant stiffness 

deterioration as the displacement demand increases. The SINA 

model is simplified in this work to have a bilinear instead its 

original trilinear backbone curve. The last hysteretic model is 

flag-shaped which has an unloading stiffness the same as the 

initial stiffness. However, after the lateral force during 

unloading decreases by bf Fy the displacement reduces to that 

from initial elastic curve following the post-elastic slope. Flag-

shaped hysteretic model can be representative of some post-

tensioned or self-centring systems. 

                 

                                       (a)                                                                      (b)                                                                      (c) 

         

                                                                            (d)                                                                        (e) 

Figure 4: Hysteretic models: (a) EPP; (b) Bilinear; (c) Takeda; (d) SINA; (e) Flag-shaped. 
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Table 3: Hysteretic behaviour parameters. 

Hysteretic Model Parameters 

Elastic-perfectly-plastic ki, Fy, 

Bilinear ki, Fy, r = 0.05 

Takeda (thin) ki, Fy, r = 0.05, Ŭ = 0.5, b = 0. 

SINA ki, Fy, r = 0.05, Fc = 0.3Fy 

Flag-shaped ki, Fy, r = 0.05, bf = 0.5 

OpenSees [21] is used to perform the NTHA using Newmark 

integration scheme with integration time step of dt = 0.01s. The 

equivalent viscous damping of 5% for the translational mode 

of vibration is assigned and a tangent stiffness proportional 

model is used. The mass proportional damping coefficient is 

ignored to have a more realistic estimation of damping of the 

system as discussed by Priestley et al. [11] for structures with 

few degrees of freedom. Analyses are conducted using a small 

displacement analysis regime, with mass and elements as 

shown in Figure 3, so P-D effects are ignored. 

Loading 

For the first part of the study, an impulse load is applied to the 

structure as shown in Figure 5 and Equation (7). 

() ()8 6

0 1.73 10 0.01 1.73 10 .= ³D = ³ ³ = ³I F t N s N s
 

( 7) 

 

Figure 5: Impulse load applied to structure. 

The impulse load is considered in this study because it helps 

to simply understand the key features of the seismic response 

of inelastic systems and chosen such that it pushes the SDOF 

systems to a displacement corresponding to m = 4. 

The impulse, I, causes momentum, M×V, and the velocity, V, 

as shown in Equation (8). 
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where F0 = constant load over a short time period of ȹt. 

For the NTHA, three ground motions are selected and shown 

in Figure 6. The first one, 1979 Coyote Lake earthquake 

recorded at the Gilroy Array Station 6, is representative of a 

short-duration impulse-type ground shaking, which is 

characteristic of near-field earthquake shakings (Figure 6(a)). 

The 5-75% significant duration, DS575 [22], of this ground 

motion is just less than 0.9 s. The next two ground motions are 

two components of 1992 Landers earthquake recorded at 

Indio-Coachella Canal, California (Figure 6(b) and (c)). They 

can be considered more as long-duration cyclic-type ground 

motions. The 5-75% significant duration, DS575, of these 

ground motions are about 25 s. The latter ground motions are 

typical of far-field earthquakes. 

These three ground motions are selected from a suite of 20 

ground motion pairs for the purpose of NTHA in this work. 

The ground motion records are selected performing a 

probabilistic seismic hazard analysis as part of Project 17137 

of Flagship 4 of QuakeCoRE for the subsoil class C in 

Wellington, New Zealand and scaled for several hazard levels 

[23]. The set, with 10% probability of exceedance in 50 years, 

matches the spectral acceleration at a period of 1s. 

 

(a) 1979 Coyote Lake, Gilroy Array Station 6 ï Component 230. 

 

(b) 1992 Landers, Indio-Coachella Canal ï Component 90. 

 

(c) 1992 Landers, Indio-Coachella Canal ï Component 00. 

Figure 6: Ground motions used for time-history analyses. 

The impulse load and ground motion records are all selected 

and/or scaled to push the systems used in this study to 

displacements corresponding to a system ductility demand, m, 
of about 4. This value was large enough to reveal the 

difference in response for different hysteretic models. 

SDOF SYSTEM RESPONSE CONSIDERATIONS 

Oscillators under Impulse Loading 

The backbone curve of bilinear, Takeda, SINA, and flag-

shaped loops, shown in Figure 4 and Table 3, are the same. 

The EPP loop has the same initial stiffness and yield strength 

as others without any post-yield stiffness. Therefore, the 

monotonic loading energy; the area under the monotonic 

loading curve above the zero force line (the shaded area in 

Figure 7); for bilinear, Takeda, SINA and flag-shaped are the 

same if the system is pushed to the same peak displacement. 

However, as can be seen in Figure 4 this area is smaller for 

EPP than for others. 

Impulse loading (Figure 5) imparts an energy to the system, 

which is equal to the system kinetic energy, EK, as follows: 

2 6 2 51 1
4.00 10 0.434 3.76 10 .

2 2
KE M V N m= ³ = ³ ³ = ³

 
( 9) 

If a system is able to dissipate and/or store the input energy, it 

does not fail. The monotonic loading energy of the system, Em, 

which is sum of dissipated and potential energy of the system 

is equal to the input energy if the damping energy is ignored. 

To exclude the damping energy, the damping ratio, x, is set to 

zero. In Figure 7(a) to (e), the shaded areas, Em, are the same 

for all loops and equal to 3.76×105 N.m. In the figures in this 



304 

paper, F and ȹ are the lateral force and lateral displacement of 

the system respectively. 

Hysteretic loops with the same backbone curves shown in 

Figure 7(b) to (e) go to the same peak displacement (i.e. the 

same ductility, µ) when subjected to impulse load shown in 

Equation (7) and Figure 5. Similarly, flag-shaped system with 

different bf values (i.e. different flag sizes) experience the 

same peak displacement since regardless of the flag size, Em is 

the same for flag-shaped loops with different bf values. bf just 

changes the proportion of the dissipated and the potential 

energy. However, to dissipate the same amount of energy, 

larger displacements in the initial direction may occur for EPP 

loops than for others as shown in Figure 7(a) because it has no 

post-yield stiffness. The displacement of the EPP system is 

107 mm while those of others are 100 mm. 

Unloading Behaviour of the Oscillators 

As discussed, for structures with the same backbone curve 

under one strong shake impulse, the response in the initial 

direction is identical and the systems have the same peak 

displacement as was seen in Figure 7. However, the total 

absolute response of the system may be affected by the 

unloading response, which causes displacement in the reverse 

(negative) direction. If damping and further shaking after the 

peak displacement are ignored, the tendency from the 

hysteresis curve itself to have a large displacement in the 

opposite direction may be obtained from consideration of the 

release of potential energy. The potential energy stored in the 

system is able to push the system back towards the negative 

direction. 

The area within the hysteretic loop is the energy dissipated by 

yielding (the green areas in Figure 9). The green plus red area, 

monotonic loading energy, is the energy required to reach the 

peak displacement. The area above the horizontal axis and 

below the unloading path of the hysteretic response is the 

recoverable strain energy stored in the system (the red areas in 

Figure 9) [24]. When the system is released from a peak 

displacement, (the green circles in Figure 9) and permitted to 

oscillate, then the potential energy of the structure is the same 

as the recoverable energy. When the structure moves back to 

zero force (the red circles in Figure 9), then the potential 

energy is converted totally into kinetic energy. The momentum 

at this point causes the same amount of energy to enter the 

structure towards the opposite direction as shown by blue areas 

in the Figure 9. 

The amount of potential energy stored in the system and the 

displacement of the system in the reverse direction are a 

function of hysteretic unloading and reloading characteristics 

respectively. It may be seen that the displacement toward the 

negative direction is larger for the Takeda, SINA, and flag-

shaped loops in the reverse loading half cycle than for the 

bilinear and EPP loops. That is because in the Takeda, SINA 

and flag-shaped loops, less energy is dissipated and a greater 

amount of energy is stored in the monotonic direction as 

compared to the bilinear and EPP loops. The stored energy can 

be interpreted as the larger potential to permit the system to 

displace in the reverse direction. Also the reloading stiffness 

of Takeda and SINA loops are smaller than that of others that 

results in larger movement towards the opposite direction. In 

addition, the displacement in the negative direction from the 

flag-shaped loop with bf = 0.5 is still greater, as shown in 

Figure 9(e). With smaller flag size (i.e. smaller bf and smaller 

energy dissipation when loaded to the same displacement) and 

larger potential energy stored in the system, the tendency of 

the flag-shaped loop to displace further in the negative 

direction increases. 

In all cases in Figure 9, for an oscillator under a strong initial 

pulse-type motion, the displacement of the bilinear, Takeda, 

SINA and flag-shaped loops is the same in the initial (positive) 

loading direction and the peak displacement in the negative 

direction due to free vibration is less than that in the positive 

direction. For many structural systems used in practice, even 

when considering further earthquake shaking, the peak 

displacement in the negative direction may not exceed the 

peak displacement in the positive direction unless the energy 

dissipation capacity of the system (i.e. green areas in Figure 9) 

is small (e.g. flag-shaped with small bf). This is consistent with 

 

                                            (a)                                                                           (b)                                                                           (c) 

 

                                                                                (d)                                                                            (e) 

Figure 7: Response of SDOF system to impulse load: (a) EPP; (b) Bilinear; (c) Takeda; (d) SINA; (e) Flag-shaped.                         

The monotonic loading energy is shown shaded. 










