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ABSTRACT 

The peak storey drift demands that an earthquake imposes on a building can be assessed through a detailed 

engineering seismic assessment or recorded if a building is instrumented. However, for the rapid seismic 

assessment of a large number of buildings, it is desirable to have a simplified means of estimating storey drift 

demands. Consequently, this paper proposes a simplified means of quickly estimating storey drift demands 

on reinforced concrete (RC) frame buildings. Expressions for peak storey drift demand as a function of 

ground motion intensity are developed by utilising concepts and simplifications available from displacement-

based seismic design and assessment methods. The performance of the approach is gauged by comparing 

predicted storey drift demands with those obtained from rigorous non-linear time-history analyses for a 

number of case study buildings. The promising results suggest that the approach proposed will be useful for 

rapidly assessing the likelihood of damage to a range of drift-sensitive elements in modern RC frame 

buildings. 

 

INTRODUCTION 

The 2010-2011 Canterbury earthquakes and the 2016 Kaikoura 

earthquake have highlighted the vulnerability of ductile 

reinforced concrete (RC) frame buildings to seismic shaking. In 

particular, damage to precast flooring systems resulted in the 

demolition of a number of buildings in the Wellington central 

business district [1]. In the days following the Kaikoura 

earthquake, reports of damage to the Statistics House building 

and other buildings with precast floors prompted the need for 

rapid assessment of a large building stock. This was addressed 

by the Wellington City Council initiating targeted damage 

evaluations based on building typology and location [2]. 

However, it is recognised [3,4] that the likelihood of observing 

damage to precast floors can be related to the storey drift 

demands. The drift demands that a building undergoes in an 

earthquake can be recorded if a building is instrumented but 

instrumentation is not common. Alternatively, engineers can 

perform a detailed seismic assessment of the building but this 

requires considerable time and detailed information on the 

building. As such, in order to provide a rapid means of assessing 

the likely impact of an earthquake on modern RC frame 

buildings, this paper proposes a simplified means of quickly 

estimating storey drift demands. It is anticipated that the 

approach proposed will be useful for assessing the likelihood of 

damage to a range of drift-sensitive elements and not just 

precast floors.      

The expressions developed herein for the estimation of peak 

storey drifts utilise concepts and simplifications available from 

displacement-based seismic design and assessment methods, as 

will be explained in the next section of this paper. 

Subsequently, the performance of the approach will be gauged 

by comparing predicted storey drift demands with those 

obtained from rigorous non-linear time-history (NLTH) 

analyses for a number of case study buildings.  

A SIMPLIFIED EXPRESSION FOR PEAK DRIFT 

DEMAND 

Background: Displacement-Based Seismic Design 

Priestley et al. [5] provide guidelines for the Direct 

displacement-based seismic design (DBD) and assessment of 

RC frame structures. Guidance includes an approximate 

expression, given by Equation 1, which sets an inelastic first-

mode displacement profile as a function of the peak storey drift 

demand. The expression is not theoretical and has instead been 

calibrated against the results of NLTH analyses of ductile RC 

frame buildings [5,6].   

∆𝑖= 𝜃𝑐ℎ𝑖 (
4𝐻𝑛−ℎ𝑖

4𝐻𝑛−ℎ1
) (1) 

where i is the lateral displacement of level i, c is the peak 

storey drift demand, Hn is the total height of the building, hi is 

the height to level i and h1 is the first floor height.  

For design to satisfy a specific drift limit, c, the displacement 

profile given by Equation 1 can be used to compute equivalent 

single-degree-of-freedom characteristics for the building, in 

line with the substitute structure approach of Gulken and Sozen 

[7] and Shibata and Sozen [8], as shown in Figure 1(a). 

Subsequently, the design displacement, d, and damping 

(which is a function of ductility demand) can be used to identify 

a required effective period, Te, as shown in Figure 1(b). 

Subsequently, the period and effective mass, me, can be used to 

compute an effective stiffness, Ke, which, multiplied by the 

design displacement, gives the base shear strength (as shown in 

Figure 1(c)) required to limit the drift demand to c.       

mailto:timothy.sullivan@canterbury.ac.nz


110 

 

 

(a) Design displacement profile (left) and equivalent SDOF representation (right)  

 

 

(b) Use of displacement spectrum to find required effective period (c) Use of effective stiffness to find required strength 

Figure 1: Overview of the displacement-based design approach of Priestley et al. [5]. 

Sullivan [9,10] has pointed out that the substitute structure 

characteristics can be identified in a more direct manner to that 

proposed in [5]. In particular, for RC frame structures it has 

been shown that an empirical substitute structure factor, fss, 

given by Equation 2, can be used to simplify the calculation of 

equivalent SDOF system properties. 

𝑓𝑠𝑠 = 0.65 +
√𝑛−0.65

𝑛2
 (2) 

where n is the number of storeys. This substitute structure factor 

can be used to quickly compute the effective mass, me, effective 

height, He, design displacement, d, and frame ductility 

demand, , using Equations 3 to 6 respectively. 

𝑚𝑒 = 𝑚√𝑓𝑠𝑠 (3) 

𝐻𝑒 = 𝐻𝑛𝑓𝑠𝑠 (4) 

∆𝑑= 𝜃𝑐𝐻𝑛𝑓𝑠𝑠
1.5 (5) 

𝜇 =
2𝜃𝑐√𝑓𝑠𝑠

𝜀𝑦𝐴𝑟
 (6) 

where m is the total mass of the building, y is the yield strain 

of longitudinal reinforcement, Ar is the beam aspect ratio that is 

obtained by dividing the length of the beams (between column 

centres) by the beam section depth, and all the other symbols 

have been defined earlier. The Appendix provides information 

clarifying the basis of Equation 6.  

Reviewing Equations 3 to 6, it can be seen that for RC frames, 

fss is equivalent to both the square of the effective mass ratio 

(me/m) and the effective height ratio (He/Hn). For wall buildings 

[9] and other structural typologies, separate expressions are 

required to adequately quantify these substitute structure 

properties. However, the single factor for RC frames is clearly 

quite convenient.  

In the constant velocity portion of a response spectrum, the 

required effective period can be computed simply as the ratio 

of the design displacement to the damped spectral displacement 

demand at a reference value of period, as shown: 

𝑇𝑒 =
∆𝑑

𝜂𝑆𝑑,𝐷
𝑇𝐷 =

2𝜋∆𝑑

𝜂𝑃𝑆𝑉
 (7) 

where TD and Sd,D are the period and spectral displacement 

demand, respectively, for a point on the spectrum within the 

constant velocity portion (see Figure 1b), PSV is the peak 

spectral velocity demand (PSV=2Sd,D/TD) and  is a scaling 

factor to account for the effects of hysteretic energy dissipation 

on displacement demands, given for RC frames by: 

𝜂 = √
1

1+8.07(
𝜇−1

𝜇𝜋
)
 (8) 

where  is the displacement ductility demand (from Equation 

6).  

As explained in [10], Equation 8 has been obtained by 

combining the spectrum scaling expression for damping with 

the ductility-dependent equivalent viscous damping equation 

for RC frames recommended in [5].   

The design base shear strength in the Direct DBD procedure is 

obtained as the product of the effective stiffness and the design 

displacement, which can be expressed in equation form [9,10] 

as: 

𝑉𝑏 =
4𝜋2𝑚𝑒

𝑇𝑒
2 Δ𝑑 =

𝑃𝑆𝑉2𝑚𝑒𝜂
2

Δ𝑑
 (9) 

where the right side has been obtained by introducing the 

expression for effective period given by Equation 7.  
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Reflecting on the form of the simplified expression for design 

strength given by Equation 9, note that if one multiplies both 

sides of the equation by d, the expression represents an energy 

balance between demand and capacity, with mass times 

velocity squared representing demand and the base shear 

(internal resisting force) times displacement representing 

capacity, with the effects of energy dissipation accounted for 

with the factor . This point is discussed further in [9].     

While Equation 9 is only directly applicable in the constant 

velocity portion of the response spectrum, Sullivan [10] also 

points out that for short period systems the design base shear 

strength need not exceed that obtained from the spectral 

acceleration plateau, such that Equation 9 becomes: 

𝑉𝑏 =
𝑃𝑆𝑉2𝑚𝑒𝜂

2

Δ𝑑
≤ 𝜂.𝑚𝑒𝑃𝑆𝐴 (10) 

where PSA is the peak spectral acceleration demand, 

corresponding to the spectral acceleration demand on the 

plateau of the elastic acceleration response spectrum being used 

for design.  

Means of Accounting for Complex Phenomena 

Detailed publications on the Direct DBD approach include 

recommendations to account for a range of complex 

phenomena, including higher mode effects, P-delta effects and 

torsion. A summary of the key provisions are provided below 

as these will be referred to subsequently as part of the simplified 

assessment procedure being proposed herein. 

Considering the frame displacement profile shown in Figure 

1(a), the design storey drift limit, c, is seen to occur at the 

ground storey level. However, this is just a design 

simplification and as explained in [11], due to higher mode 

effects and the actual lateral stiffness, one could expect the peak 

storey drift to occur at the 2nd or 3rd storey or over upper storeys. 

To account for higher mode effects tending to increase peak 

storey drift demands over and above those of the 1st mode, a 

higher mode factor, , is recommended ([5], [12]), given by 

Equation 11: 

𝜔𝜃 = 1.0                    for    n < 6 (11a) 

𝜔𝜃 = 1.0 − 0.015 × (𝑛 − 6)    for 6 < n < 16 (11b) 

𝜔𝜃 = 0.85                   for   n > 16 (11c) 

where n is the number of storeys. The expressions given by 

Equation 11 are simplified, fit to the results of NLTH analyses. 

One could expect the actual higher mode drift demands to 

depend on the ground motion spectral shape and intensity, and 

the way that the mass, stiffness and strength is provided over 

the height of the building. However, for the purposes of 

providing a practical design procedure and recognizing that the 

first mode will contribute most to the total drift demand, 

Priestley et al. [5] (and others) advocate for such a simplified 

estimation of higher mode drifts.  

The impact of second-order P-delta effects on a building can 

also be challenging to assess but it is addressed in a relatively 

simple manner in Direct DBD. As explained in [5] and [11], P-

delta effects are accounted for in Direct DBD by increasing the 

required base shear strength by an amount VP- given by: 

𝑉𝑃−∆ = 𝐶
𝑚𝑒.𝑔.∆𝑑

𝐻𝑒
 (12) 

where g is the acceleration due to gravity and C is a factor to 

account for the impact that hysteretic properties have on P-delta 

effects, recommended by Priestley et al. [5] to be taken as 0.5 

for RC frame structures. Checks are also made to ensure that 

the P-delta stability coefficient given by Equation 13 does not 

exceed 0.30, as this can represent a point of dynamic instability 

for systems responding in the non-linear range. 

𝜃𝑃∆ =
𝑚𝑒.𝑔.∆𝑑

𝑉𝑏𝐻𝑒
 (13) 

where the symbols have been defined previously. Note that the 

numerator in the above expression represents the second-order 

overturning demand and the denominator represents the 

overturning resistance. 

Torsion is a third phenomenon that complicates the design and 

assessment of a building. When designing new structures, 

Priestley et al. [5] argue that torsion can be effectively mitigated 

(for the ultimate limit state) by ensuring that the strength 

eccentricity is zero. However, strength and stiffness 

eccentricities may be present in existing buildings and hence 

the likely torsional response should be accounted for as part of 

a detailed assessment. Beyer et al. [12] and more recently Fox 

et al. [13] have proposed methods to estimate nominal torsional 

rotations that are based on effective stiffness concepts and 

generally perform reasonably well. However, the author is not 

aware of simplified but accurate means of accounting for 

torsion.      

Formulation of Expressions for the Rapid Assessment of 

Storey Drift Demands 

As explained in the introduction to this paper, the aim of this 

work is to provide a rapid means of assessing drift demands on 

RC frame buildings. To do this, the simplified design 

expressions reviewed in the previous sections are rearranged to 

provide the following expressions for peak storey drift 

demands:      

𝜃𝑐 = 𝑃𝑆𝑉√
𝜀𝑦𝐴𝑟

2𝐶𝑦𝑔𝐻𝑛𝑓𝑠𝑠
1.5  for 𝑃𝑆𝑉 < √

𝜀𝑦𝐴𝑟𝐶𝑦𝑔𝐻𝑛𝑓𝑠𝑠
0.5

2
   (14a) 

𝜃𝑐 =
0.28𝑃𝑆𝑉2

𝐶𝑦𝑔𝑓𝑠𝑠𝐻𝑛
+

0.36𝜀𝑦𝐴𝑟

√𝑓𝑠𝑠
 for 𝑃𝑆𝑉 ≥ √

𝜀𝑦𝐴𝑟𝐶𝑦𝑔𝐻𝑛𝑓𝑠𝑠
0.5

2
   (14b) 

where Cy is the ratio of the base shear resistance, Vb, to building 

weight, and all other symbols have been defined earlier. The 

equations are specified for different ranges of PSV as Equation 

14a is considered valid in the elastic range whereas Equation 

14b is applicable for the inelastic range associated with higher 

values of PSV.  

Application of Equation 14 requires information on the building 

height, Hn, number of storeys, n, beam lengths and section 

depths, expected reinforcement strength, fy, and base shear 

strength as a fraction of the building weight (to give Cy). The 

engineer then computes the beam aspect ratio, Ar, (dividing a 

representative beam length by the beam section depth), the 

yield strain, y, of the reinforcement (as bar strength divided by 

modulus of elasticity), and the substitute structure factor by 

inserting the number of storeys into Equation 2. Subsequently, 

the PSV expected to indicate the transition from elastic to 

inelastic response is found using the term on the right side of 

Equation 14 and following this, the drift demands for different 

values of PSV are computed using Equation 14. The drifts 

obtained should then be amplified to account for P-delta and 

higher mode effects but prior to explaining how to do this, the 

procedure used to arrive at the above equations is explained in 

the paragraphs below.  

Equation 14b has been obtained by substituting Equation 6 into 

Equation 8, substituting the result and Equations 3 to 5 into 

Equation 10, and then rearranging terms. The limit on the base 

shear in Equation 10 has not been included and thus the 

expression is likely to be inaccurate for short period buildings. 

However, it is noted that even 2-storey RC frame structures 

could well have initial periods (based on cracked section 

properties) beyond the spectral acceleration plateau and hence, 
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Equation 14b should be applicable to a wide range of RC frame 

buildings. 

Equation 14a has been formulated by first identifying the 

factors that most affect the period of vibration of a RC frame 

building. To this extent, recall that the period of vibration for a 

SDOF system is given by: 

𝑇 = 2𝜋√
𝑀

𝐾
 (15) 

For the first mode period of a multi-storey frame, the mass in 

Equation 15 should be taken as the effective mass (Equation 3) 

and the stiffness can be found as the base shear strength divided 

by the yield displacement. The yield displacement can be 

computed as the product of the RC frame yield drift and 

effective height (i.e. y = 0.5yArHe) or by rearranging Equation 

6 to find the drift required for a system ductility of 1.0, and 

inserting this drift within Equation 5 (which will give an 

equivalent result). The definition of yield displacement here is 

an equivalent SDOF system yield displacement rather than the 

displacement at which a member (or storey) is first expected to 

yield (which could instead be obtained by substituting the yield 

drift directly into Equation 5). Consequently, the period of an 

RC frame (with cracked section stiffness properties) can be 

estimated as:   

𝑇 = 2𝜋√
𝐻𝑛𝜀𝑦𝐴𝑟𝑓𝑠𝑠

1.5

2𝐶𝑦𝑔
 (16) 

This expression for the period of vibration should not be used 

for design, unless estimating drift demands, as it will give 

longer periods than typically used for code design methods. 

Recognising also that the spectral displacement demand is 

equivalent to the equivalent SDOF displacement demand on an 

elastic system, the peak drift demand can be related to spectral 

displacement and velocity demands as: 

𝜃𝑐 =
𝑆𝑑

𝐻𝑛𝑓𝑠𝑠
1.5 =

𝑃𝑆𝑉.𝑇

2𝜋𝐻𝑛𝑓𝑠𝑠
1.5 (17) 

where Sd is the spectral displacement demand at period, T. 

Substituting Equation 16 into Equation 17, the peak drift 

demand in the elastic range can be obtained as per Equation 14a. 

Earlier, it was shown that in displacement-based design, P-delta 

effects can be accounted for by increasing the required base 

shear strength by an amount given by Equation 12. For 

assessment, it has been pointed out [14] that this approach is 

equivalent (in the constant velocity portion of the response 

spectrum) to amplifying the drift demands by the factor c: 

𝛼𝑐 =
1

(1−𝐶𝜃𝑃∆)
 (18) 

where P is the P-delta stability coefficient (Equation 13) and 

C is a function of hysteretic type. For RC frames, substituting 

in the expressions presented earlier, Equation 18 becomes:    

𝛼𝑐 =
1

(1−0.5
𝜃𝑐𝑓𝑠𝑠
𝐶𝑦

)
 (19) 

Finally, the response of higher modes on peak storey drift 

demands can also be accounted for by simply dividing the drift 

obtained from Equation 14 by the higher mode drift factor 

computed using Equation 11.  

In light of the above, to allow for both P-delta and higher mode 

effects in a simplified fashion, one can first compute the storey 

drifts according to Equation 14 and then amplify the result to 

obtain the peak storey drift demand,max, as follows: 

𝜃𝑚𝑎𝑥 =
𝛼𝑐𝜃𝑐

𝜔𝜃
 (20) 

where c is the 1st-order drift demand (from Equation 14),c is 

the P-delta drift amplification factor (Equation 19) and  is the 

higher mode drift factor (Equation 11).  

The approach proposed above is intended for the assessment of 

median drift demands. Investigations into the dispersion in 

these demands should be part of future research. 

Limitations of the Rapid Assessment Approach 

A number of simplifications and assumptions have been made 

in formulating Equation 20 and thus the limitations of its use 

should be identified.   

One major simplification to underline is related to the spectral 

shape. Real ground motions obviously do not impose spectral 

demands that exactly match code spectra. Furthermore, the 

approach has been formulated considering response in the 

constant velocity portion of the response spectrum. At long 

periods and high intensities, response will tend to enter the 

constant-displacement region of the response spectrum and this 

will imply that the drifts do not increase as rapidly with 

intensity as the simplified method might suggest. On the other 

hand, whilst uncommon, very stiff short RC frame buildings 

may have periods of vibration that lie within the constant 

acceleration portion of a response spectrum and this would also 

jeopardise the accuracy of the method.  

Another key simplification has been to estimate the yield drift 

of the RC frames using an expression that depends solely on the 

length and depth of the beams, as well as the yield strain of 

longitudinal reinforcement. Although Priestley [15] presents 

experimental evidence to strongly support this relationship, 

reviewed in the appendix, it is evident that variations in column 

sizes and storey heights will impact on the accuracy of the 

expression and, subsequently, on the predicted drift demands. 

A characteristic of the expression for displaced shape presented 

in Equation 1 that could also affect the accuracy of the 

approach, is the manner with which the lateral resistance is 

provided over the height of the building. In [5], it is 

recommended that 10% of the base shear is lumped at roof level 

when setting storey shear resistance requirements. This 

recommendation is also made in the New Zealand loadings 

standard and it helps to limit drift demands over the upper levels 

of a building. The displaced shape expression of Priestley et al. 

[5] (and given by Equation 1) was verified by comparing peak 

displacement and storey drift profiles from NLTH analyses, but 

only for frames designed with the recommended strength 

distribution in mind. Therefore, if significant changes in 

strength or stiffness are present from one storey to another, it is 

not expected that the simplified approach would provide 

accurate estimates of peak drift demands. Nevertheless, it is 

expected that for most modern RC frame buildings, engineers 

would have provided a good distribution of strength and 

ensured that abrupt stiffness changes are avoided.      

Another point that should be recognised is that the allowance 

for P-delta effects implies a linear amplification of demands 

when in reality, for high P-delta stability coefficients at which 

collapse due to dynamic instability becomes imminent, the 

demands are expected to increase exponentially. This issue is 

avoided in design by limiting the stability coefficient at the 

design intensity level. However, as the rapid assessment 

method proposed herein is a function of intensity, it should be 

recognised that the accuracy is likely to be reduced at high 

intensities.    

No allowance or discussion of soil-foundation-structure 

interaction has been made to this point. Thus, if foundation 

deformations are likely to be significant, the accuracy of the 

approach could be limited. Furthermore, if the RC frames are 

located on liquefiable sites, the rapid drift estimation procedure 

would quickly become very inaccurate at high intensity levels.  
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Finally, no allowance has also been made for torsion. 

Significant torsional response is also something that engineers 

will typically design-out by minimising stiffness and strength 

eccentricities, or increasing the overall resistance to limit drifts 

and displacements. Nevertheless, there are a number of 

questions as to the best means of estimating torsional response 

and as the rapid methodology proposed here does not make 

allowance for torsion, it is likely to be inaccurate for buildings 

with significant in-plan irregularities.  

ALTERNATIVE SIMPLIFIED METHODS 

Use of Period-Height Relationships 

While the approach proposed herein is rapid because it only 

requires application of a number of equations, without time-

consuming structural analysis, an even simpler assessment 

procedure can be followed if the period of vibration of a 

building is estimated as a function of its height. Aninthaneni 

and Dhakal [16,17] have developed versatile equations to 

estimate the natural period of moment resisting and braced 

frames by taking into account the stiffness of frame members. 

Crowley and Pinho [18] provide a thorough review of various 

proposals in the literature to relate the period of vibration of a 

RC building to its height. By comparing modelled and predicted 

periods of vibration for a number of case study buildings, they 

concluded that the Eurocode 8 [19] period-height relationship 

for RC frames, given by Equation 21, performed well for bare 

(as opposed to masonry infilled) RC frames.  

𝑇 = 0.075𝐻𝑛
0.75 (21) 

where Hn is the building height in metres.       

With knowledge of the period of vibration of a building, and 

assuming that the equal-displacement rule is applicable, 

Equation 21 can be used to obtain the 1st mode displacement 

demand directly from response spectra. Subsequently, Equation 

5 can be used to relate the system displacement demand to a 

peak storey drift demand. This implies that the peak storey drift 

can be estimated as: 

𝜃𝑚𝑎𝑥 =
𝑆𝑑

𝜔𝜃𝑓𝑠𝑠
1.5𝐻𝑛

≈
0.075𝑃𝑆𝑉

𝜔𝜃2𝜋𝑓𝑠𝑠
1.5𝐻𝑛

0.25 (22) 

where Sd is the spectral displacement demand at the period of 

the building,  is the higher mode drift factor (from Equation 

11) and the right-side of the equation approximates the spectral 

displacement demand as Sd = T.PSV/2. Note that no allowance 

for second-order P-delta effects has been made here as it would 

require knowledge of the weight and base shear resistance of 

the building, which is presumably unknown in this simplified 

formulation. 

GAUGING THE PERFORMACNE OF THE RAPID 

ASSESSMENT PROCEDURE 

In order to gauge the performance of the proposed procedure, 

the peak storey drift demands obtained from non-linear 

dynamic analyses of a set of case study modern RC frame 

buildings will be compared with those predicted by the 

proposed expressions as well as those obtained using period-

height relationships.  

Description of the Case Study Buildings 

Raghunandan et al. [20] developed design solutions and non-

linear models for a large set of RC frame buildings as part of a 

study into the effects of ground motion duration on collapse 

risk. The 2-storey, 4-storey and 8-storey RC frame architype 

buildings designed by Raghunandan et al. [20] for sites in Los 

Angeles and Seattle are selected for examination in this work. 

Figure 2 illustrates the buildings, which are relatively regular in 

height and plan. These buildings have been selected owing to 

the availability of information related to both the design and 

assessment of the systems via non-linear time-history analyses. 

In addition, because the modelling and analysis of the RC 

frames was not conducted by researchers active in the field of 

displacement-based design or assessment, the buildings should 

represent an impartial test of the displacement-based prediction 

equations proposed in this work. 

   

 

Figure 2: Elevation of the case study buildings (from Raghunandan et al. [20]) used to assess the performance of the 

simplified approach. 
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Buildings examined herein were designed by 

Raghunadan et al. [20] according to IBC 2012 as 

special moment resisting frames for two sites:  

(1) Los Angeles, and (2) Seattle. 
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Table 1: Summary of design information for the case study buildings. 
 

Los Angeles case-study buildings Seattle case-study buildings 

Number of storeys, n 2 4 8 2 4 8 

Total height, Hn (m) 8.53 16.46 32.31 8.53 16.46 32.31 

Base Shear Coefficient, Cy [1] 0.54 0.31 0.14 0.44 0.22 0.10 

Re-bar steel grade, Fy (MPa) [2] 462 462 462 462 462 462 

Period of vibration, T (s) [3] 0.54 0.86 1.57 0.58 1.00 1.80 

Beam aspect ratio, Ar [4] 5.70 5.70 5.70 5.70 5.70 5.70 

[1] Values taken from [20] by multiplying design base shear coefficient with frame overstrength factor.   
[2] Expected rebar yield strength, as reported in [22]. 
[3] Periods of vibration obtained from eigen-value analyses by Raghunandan et al. [20] considering cracked concrete sections. 
[4] Beam aspect ratios computed using bay lengths reported in Raghunandan et al. [20] and maximum beam section depths 

reported in [22]. 

 

The buildings were designed according to IBC2012 [21] and as 

such, were capacity designed to encourage the formation of a 

beam-sway mechanism during intense earthquake shaking. A 

summary of relevant design information is reported in Table 1. 

The base shear coefficients included in Table 1 have been taken 

from [20]. For a rapid assessment, one could estimate the base 

shear coefficient based on historical design practice, with 

allowance for the likely system overstrength (noting that 

overstrength factors reported in [20] ranged from 2 to 4). 

Alternatively, with information on beam section properties, the 

overturning resistance of all hinges expected to form in a beam-

sway mechanism could be summed (together with column base 

hinge strengths estimates) and then divided by the effective 

height (Equation 4) to give a more accurate estimate of base 

shear resistance. 

Applying the rapid assessment approaches described in the 

previous sections, the intermediate results presented in Table 2 

are obtained. P-delta amplification factors are not reported as 

these were computed for each value of intensity examined. 

Table 2 also includes a comparison of the predicted periods of 

vibration for both of the simplified methods with the analytical 

periods reported by Raghunandan et al. [20]. It can be seen that 

the Eurocode 8 expression (Equation 21) tends to significantly 

underestimate the analytical periods of vibration whereas the 

simplified method correlates better, slightly overestimating 

some of the periods reported by Raghunandan et al. [20]. One 

might have anticipated Equation 21 would underestimate the 

cracked periods of vibration reported in [20] because it was 

previously found by Crowley and Pinho [18] to predict periods 

associated with gross section properties well. The 

underestimation of period might be considered conservative for 

a force-based design approach but, as will be demonstrated 

shortly, it is non-conservative for the estimation of peak storey 

drift demands.  

In order to complete the prediction of storey drift demands, the 

only information required in addition to that reported in Table 

2 is the peak spectral velocity (or other preferred intensity 

measure). The next section will briefly describe the NLTH 

modelling and analysis approach, and the intensity of the 

ground motions used. 

 

 

Table 2: Intermediate assessment results obtained for the case study buildings. 
 

Los Angeles case-study buildings Seattle case-study buildings 

Number of storeys, n 2 4 8 2 4 8 

Yield strain re-bar, y 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 

Substitute structure factor, fss 0.841 0.734 0.684 0.841 0.734 0.684 

Higher mode drift factor,  1 1 0.97 1 1 0.97 

Period, T, estimated from Equation 16 0.56 0.93 1.82 0.62 1.11 2.16 

Period, T, from Eigen-Value Analyses [1] 0.54 0.86 1.57 0.58 1.00 1.80 

Period, T, estimated using EC8 (Eq. 19) 0.37 0.61 1.02 0.37 0.61 1.02 

[1] Periods of vibration obtained from eigen-value analyses by Raghunandan et al. [20] considering cracked concrete sections. 
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NLTH Analysis Approach  

In order to investigate collapse risk, Haselton and Deierlein [22] 

and Raghunandan et al. [20] describe the refined non-linear 

modelling approach used to assess the architype structures. 

Following this, as part of an investigation into duration effects, 

Bhanu et al. [23] have recently subject the non-linear models 

developed in [20] to incremental dynamic analyses [24] using 

the FEMA P-695 far-field ground motion set as well as a a set 

of spectrally-equivalent long-duration ground motions [25]. In 

this work, the results obtained by Bhanu et al. [23] using the 

FEMA P-695 ground motion set are used to gauge the 

performance of the rapid assessment approach proposed herein. 

Figure 3 presents the geometric mean acceleration and velocity 

response spectra for the ground motion set, which consists of 

44 ground motions (22 pairs) recorded in earthquake events 

ranging in magnitude from 6.5 to 7.6. Details of the ground 

motion set can be found in [26].   

 

(a) 

 

(b) 

Figure 3: Geometric mean response spectra of FEMA P-695 

far-field ground motion set, as used by Bhanu et al. [23]; (a) 

acceleration, and (b) velocity response spectrum. 

Figure 4 reports the median of the peak storey drifts obtained 

by Bhanu et al. [23], as a function of peak spectral velocity at 

the first mode period of the case study buildings. Whilst not 

shown in the figure, the dispersion in drift demands was low at 

low intensities (prior to yield) and ranged from around 0.30 to 

0.40 at higher intensity levels (not causing collapse). The 

periods of vibration used for this correspond to those in Table 

1 and the spectral velocity refers to the geometric mean spectral 

velocity of the FEMA P-695 far-field set. Also included in 

Figure 4 are the peak storey drifts predicted using Equation 20 

and a more traditional period-height relationship in Equation 

22. In order to apply both expressions, note that the peak 

spectral velocity has been assumed to correspond to the spectral 

velocity demand at the first mode period of the building.   

Reviewing the results presented in Figure 4, the peak storey 

drifts estimated via Equation 20 are seen to correlate well with 

the results of incremental dynamic analyses. This is 

encouraging, particularly given that considerable time and 

expertise is required to develop the non-linear models and run 

the incremental dynamic analyses. Also note from Figure 4 that 

the use of a traditional period-height relationship (given by 

Eurocode 8 [19]) has not been successful in predicting peak 

storey drift demands. As Equation 21 was seen to underestimate 

the cracked building periods, it is perhaps not a surprise to see 

that peak storey drift demands are significantly underestimated. 

Furthermore, because the equal-displacement rule has been 

assumed, the period-height relationship does not successfully 

predict the exponential increase in drift demands at higher 

intensities, rendering the method even more non-conservative 

for seismic assessment. In contrast, the proposed approach 

appears to be a little conservative at higher intensities but not 

excessively.   

The proposed method has been tested here using frames 

designed to US codes and so one could question how well it 

would perform for RC frames designed according to other 

codes. As the method depends on the RC frame characteristics 

that are considered to most affect the yield drift, stiffness and 

non-linear behaviour, it is expected that performance should be 

similar for frames designed to other codes, provided that they 

include capacity design requirements to ensure formation of a 

beam-sway mechanism, and provided that a reasonable 

distribution of strength and stiffness has been adopted over the 

height of the building (i.e. in line with that prescribed by the 

standards). However, future research could look to confirm this. 

CONCLUSIONS 

This paper has proposed a simplified means of quickly 

estimating storey drift demands on RC frame buildings. 

Expressions for peak storey drift demand have been proposed 

as a function of peak spectral velocity, and a number of RC 

frame characteristics that should be relatively easy to obtain or 

estimate. The approach has been developed by utilising 

concepts and simplifications available from displacement-

based seismic design and assessment methods, and includes 

simplified means of allowing for complex phenomena such as 

P-delta and higher mode effects.  

Anticipated limitations in the accuracy and applicability of the 

rapid assessment procedure have been underlined. The 

performance of the approach has been gauged by comparing 

predicted storey drift demands with those obtained from 

rigorous non-linear time-history analyses for two sets of 2-

storey, 4-storey and 8-storey RC frame buildings. The excellent 

correlation between rigorous and simplified drift estimates 

suggests that the approach proposed will be useful for rapidly 

assessing the likelihood of damage to a range of drift-sensitive 

elements in modern RC frame buildings. There are, however, 

limitations in the accuracy of non-linear time-history analyses 

and so future research should aim to further verify the method 

by comparing drift predictions with those recorded in 

instrumented buildings.  
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(a) 

 

  

(b)  

  

(c) 

Figure 4: Median of peak storey drift demands obtained from incremental (non-linear) dynamic analyses from [23] together 

with peak drift estimates obtained via rapid assessment methods for (a) 2-storey, (b) 4-storey and (c) 8-storey Los Angeles (left) 

and Seattle (right) architype structures. 
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APPENDIX 

Basis of Eq.(6) for the Ductility Demand on RC Frames 

Equation 6 proposes that the ductility demand on an RC frame 

is proportional to the storey drift demand divided by the 

longitudinal reinforcement yield strain and the beam aspect 

ratio. This expression is equivalent to dividing the storey drift 

by the yield drift (with an adjustment to convert from a MDOF 

system into an equivalent SDOF system) where the yield drift 

expression is based on the proposal of Priestley [15], given by:  

𝜃𝑦 = 0.5𝜀𝑦
𝐿𝑏

ℎ𝑏
=

𝜀𝑦𝐴𝑟

2
 (A1) 

Where y is the storey drift ratio at yield, y is the longitudinal 

reinforcement yield strain, and Ar is the beam aspect ratio 

(given by the beam length, Lb, between column centrelines 

divided by the beam section depth, hb). 

One could query how applicable the yield drift expression is to 

New Zealand RC frame structures and whether changes in 

frame geometry or material properties would significantly 

affect its accuracy? To answer this above, recall that Priestley 

[15] collected experimental data from 46 beam-column sub-

assemblage tests, of which 33 were conducted in New Zealand 

and hence are likely to be representative of New Zealand 

construction. Furthermore, the specimens included the 

following range of characteristics: 

 Column height/beam length ratio (Hc/Lb): 0.4 – 0.86 
 Concrete compression strength (f’c): 22.5 – 88MPa  

 Beam reinforcing steel yield strength (fy): 276 – 

611MPa 

 Maximum beam reinforcement ratio (A’s/bwd): 

0.53%  –  3.9% 

 Column axial load ratio (Nu/f’cAg): 0 – 0.483 

 Beam aspect ratio (Lb/hb): 4.4 – 12.6 

Thus, the dataset collected does cover a broad range of RC 

frame characteristics that would be expected to encompass most 

RC frame buildings found in New Zealand.  

Comparing the yield drift values obtained experimentally with 

those obtained via Equation (A1), Priestley [15] generated 

Figure A1. If the yield drift expression were perfect, all the dots 

should lie along the line. The results in Figure A1 show that 

even though the yield drift expression is not perfect, it is very 

effective at estimating the storey drift at yield and given this, it 

provides a simple means of rapidly estimating ductility 

demands in RC frames. 
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Figure A1: Experimental Yield Drifts of Reinforced 

Concrete Beam-Column Test Units Compared with 

Predictions of Equation (A1) from [15]. 

 

 


