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SECTION B

THE ANALYSIS AND DESIGN OF AND THE EVALUATION
OF DESIGN ACTIONS FOR REINFORCED CONCRETE DUCTILE SHEAR WALL STRUCTURES

T. Paulay* and R.L. Williams**

ABSTRACT:

A comprehensive review of the state of the art in the design of

earthquake resisting ductile structural walls is presented.

The material

has been compiled from the technical literature, the deliberations within
the New Zealand National Society for Earthquake Engineering and research

efforts at the University of Canterbury.

The paper attempts a classific-

ation of structural types and elaborates on the hierarchy in energy dis-

sipation.

After a review of available analysis procedures, including

modelling assumptions, a detailed description of capacity design pro-
cedures for both cantilever and coupled shear wall structures is given.
The primary purpose of capacity design is to evaluate the critical design
actions which can be used in the proportioning and reinforcing of wall
actions which can be used in the proportioning and reinforcing of wall

sections.
suggested.

An approach to the estimation of structural deformation is
To satisfy the ductility demands imposed by the largest

expected earthquake, detailed design and detailing recommendations are
given and the application of some of these is presented in an appendix.

INTRODUCTION:

The usefulness of structural walls in
the planning of multistorey buildings has
long been recognized. When walls are
situated in advantageous positions in a
building, they can become very efficient in
lateral load resistance, while also fulfill-
ing other functional requirements.

Because a large portion of the lateral
load on a building, if not the whole amount,
and the horizontal shear force resulting
from it, are often assigned to such
structural elements, they have been called
shear walls. The name is unfortunate
because shear should not be the critical
parameter of behaviour.

The basic criteria that the designer will
aim to satisfy when using structural walls
in earthquake resistant structures are as
follows:

(a) To provide adequate stiffness so that
during moderate seismic disturbances
complete protection against damage,
particularly in non-structural com-
ponents, 1is assured.

(b) To provide adequate strength to ensure
that an elastic seismic response,
‘generating forces of the order specified
by building codes (1) §oes not result
in more than superficial structural
damage. Even though during such an
event some non-structural damage is
expected, it is unlikely that in
buildings with well designed shear
walls this will be serious.

(c) To provide adequate structural ductility
and capability to dissipate energy for
the case when the largest disturbance
to be expected in the region does occur.
Fxtensive damage, perhaps beyond the
possibility of repair, is accepted
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under these extreme conditions, but
collapse must be prevented.

(d) The subsequent sections concentrate
on those aspects of the desion and
response of structural walls that are
relevant to this third design criterion.
Consequently the inelastic response
of structural walls, when subjected
to simulated cyclic reversed loading,
together with various parameters
that must affect this response, will
be examined in some detail for various
types of structures. It will be
assumed that in all cases adequate
foundations can be provided so that
rocking will not occur and that
energy dissipation, when required,
will take place in the structural
wall above foundation level. A
detailed discussion of concepts,
relevant to the design of foundations
for shear wall structures, is provided
in Reference 5. Also it will be
assumed that:

(i) Inertia forces at each floor
can be introduced to the
structural wall by adequate
connections, such as collector
beams or diaphragms and from
the floor system, and that

(ii) The foundation for each wall
does not significantly affect
its stiffness relative to similar
other walls in a building.

TYPES OF DUCTILE‘STRUCTURAL WALLS :

In this section the principles of the
analyses and the design of earthquake
resisting structural walls, in which
significant amounts of energy can be
dissipated by flexural yielding in the
superstructure, are examined. The
prerequisite in the design of such seismic
walls is that flexural yielding in clearly
defined plastic hinge zones must control
the strength to be utilized during imposed
inelastic seismic displacements. As a
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corollary to this requirement, failure

due to shear, inadequate anchorage or
splicing of the reinforcement, instability
of concrete components or compression bars
and sliding along construction joints
must be avoided, while large inelastic
‘'seismic displacements are sustained by

the structure. Some of the failure modes
mentioned are illustrated in figure 1.

In the evaluation of the equivalent
lateral static design load, to be used in
establishing the minimum seismic strength
of a structure, the New Zealand Design
and Loading Code(l) gpecifies structural
type factors, S. These factors are
intended to reflect the expected seismic
performance of the structure. There
are two aspects which are to be considered
in the assessment of performance, one is
the ability of the type of structure to
dissipate energy in a number of inelastic
displacement cycles, and the other is
the degree of redundancy existing in the
chosen structural system. A high degree
of structural redundancy, involving a large
number of localities where energy dissipation
by flexural yielding can occur, is desirable.

Accordingly it is recommended that
earthquake resisting ductile structural
walls be classified as follows:

(a) Two or more cantilever walls with a
height, h _, to horizontal length,
17, ratio of not less than two are
assigned a structural type factor
of § = 1.0 (see figure 2a).

(b) For two or more cantilever walls, each
with an aspect ratio h /% not less
than two, which are coupled by a
number of appropriately reinforced
ductile coupling beams that are
capable of dissipating a significant
portion of the seismic energy, the
value of S is 0.8. This is in
recognition of the hich degree of
redundancy and the fact that damage
is likely to be small in the gravity
load carrying elements.

The significance of the coupling

beams in energy dissipation is
conveniently expressed by the contribut-
ion of the coupling beams to the total
overturning moment that is produced by
the code specified lateral loading

at the base of the coupled shear wall
structure. This is illustrated in
figure 17. A suitable parameter which
expresses this is the moment ratio

e

A=y
o

(B-1)

where T = induced axial load in one
of the two coupled shear
walls at the base of the
structure due to the code
specified lateral static
loading

2 = distance between axes of the
two walls

M = overturning moment due to the

109

load inducing T, about the base of
the structure

These quantities may be seen in figure
17.

Depending on the contribution of the
beams to the resistance of overturning
moment and hence to total energy dissipation,
the structural type factor, S, is made
dependent on the moment ratio, A, thus

when 0.67 > A > 0.33 (B-2)

then 0.8 S =10.8 + 0.6%
(0.67 - A) £ 1.0 (B-3)

For intermediate values of A a linear
interpolation of S may be made. The
application of this is discussed in detail
in section B.5.3.4.

Typically for a wall with deep coupling
beams, illustrated in figqure 17b, the
appropriate S factor is likely to be 0.8.
When walls are interconnected by slabs only,
(figure 17¢c) as is often the case in
apartment buildings, the value of A from
Eg. (B-1l) will usually be much less than
0.33 and hence S = 1.0. A corparison of
the moment contribution of the 2T component
to the total overturning moment My is shown
in figure 18.

(c) Single cantilever walls, with hw/L > 2,
are to be designed with S = 1.2, toO
compensate for the lack of redundancy.
(See figure 2b).

(d) Squat cantilever walls with an aspect
ratio of h /% < 2, in which shear
effects are likely to be dominant,
are not expected to produce as efficient
energy dissipation due to flexural
ductility as more slender structural
walls. Shear deformations, particularly
shear sliding, may cause significant
pinching in the hysteresis loops
exhibited by squat shear walls(2),
and thereby loss of energy dissipation
will occur.

In order to reduce the displacement
ductility demand on squat walls, the
strength of the walls with respect to
seismic loading should be increased.
Hence for walls for which 1 <h_ /2% < 2,
the structural type factor given above
in (a), (b) and (c) should be multiplied
by Z where

1< 2z2=2.2-0.6 hw/SLw < 1.6 (B~4)

It is to be noted that the use of higher
structural type factors, i.e.

S=1.6 x1.0=1.6 o0or S=1.6 x 1.2 = 1.92,
is expected only to reduce but not to
eliminate the ductility demand on squat
shear walls.

Squat walls will have a relatively low
fundamental period (T < 0.6 sec). It
is known that short period structures,
designed to the requirements of the

New Zealand loading code ( are likely
to be subjected to higher ductility
demands than long period structures.
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Fig. 1- Possible Failure Modes in Cantilever Shear Walls
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Moreover, in a given earthquake, a
short period squat shear wall is
likely to be subjected to a greater
number of excursions beyond yield

than a long period structure. There-
fore the cumulative ductility, which
has some relevance to damage, is still
high. These observations indicate
that squat shear walls, such as shown
in figure 2c, designed with a
modified structural type factor, S,
must also be ductile and hence they
must be detailed accordingly.

Structural walls of different types
are reviewed in Reference 3 and detailed
procedures recommended for walls which
cannot be made fully ductile are presented
in Reference 4. The requirements for the
design of foundations which can sustain
inelastic superstructures when their
maximum feasible seismic strength is being
developed, are examined in Reference 5.

HIERARCY IN ENERGY DISSIPATION:

It is generally accepted that for most
siguations energy dissipation by hysteretic
damping is a viable means by which structural
survival of large earthquake imposed
displacements can be assured. This may
involve very large excursions beyond yield.
Such structures must therefore be ductile.
To ensure the desired energy dissipation,
the designer's primary aim will be to
minimize the inevitable degradation in both
stiffness and strength.

Flexural Yielding of Ductile Walls

An obvious source of hysteretic damping
is the yielding of the principal flexural
reinforcement. Yielding can be restricted
to well defined plastic hinge zones, as
shown in figure 1b. Therefore such areas
deserve special attention. Concrete,
being a relatively brittle material that
shows rapid strength degradation, in both
compression and shear, when subjected to
repeated inelastic strains and multi-
directional cracking, should not be
considered in structural walls as a
significant source of energy dissipation.
To ensure the desired ductility, the major
part of the internal forces in the potential
plastic region of a shear wall should
therefore be allocated to reinforcement.
The desired response of a ductile shear
wall structure manifests itself in well
rounded load-displacement hysteresis loops,
such as shown in figure 3.

Control of Shear Distortions

While shear resisting mechanisms in
reinforced concrete, that rely on the
traditional truss mechanism (figure lc),
can be made relatively ductile in shear
during monotonic loading, they are generally
unsuitable for inelastic cyclic shear
loading. Shear resistance after inelastic
shear displacements can be attained only
when the subsequent imposed displacement
is larger than the largest previously
encountered displacement. Inelastic
tensile strains in stirrup reinforcement
can never be recovered and hence in such
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cases the width of diagonal cracks also
increases with progressive cyclic loading.
Curves 3 and 4 in figure 4 show typical

load displacement responses for one quadrant
of a displacement cycle, which have been
affected by significant shear displacements.
In comparison curves 1 and 2 show the ideal-
ized elastic-plastic and the optimal response
of a reinforced concrete member. In order
to minimize the 'pinching' of hysteresis
loops, i.e. the loss of energy dissipating
capacity within restricted displacements,
designers should endeavour to suppress
inelastic shear distortions. In
conventionally reinforced walls the
detrimental effect of shear increases with
the magnitude of the shear stress. For
example figure 5 shows the hysteretic
response of a cantilever shear wall in which,
due to relatively large shear stresses, shear
de formations have become increasinagly
sionificant with increased cycles of loadinc
and the amwplitude of the applied deflection
at the top of the wall. It is also seen
that in each cycle the stiffness of the

wall decreased, even though the full capacity
of the wall was attained. The envelope
curve follows closely the load-displacement
curve that is obtained during monotonic
loading with the same displacement ductility.
If several cycles with the same magnitude

to top displacement are applied, for example
to 4 in (10 cm) in each direction, (see
figure 5), the load attained would have
gradually decreased in each cycle. Such

a wall is likely to fulfill the design
criteria but its performance is clearly
inferior to that demonstrated in figure 4.

The Desired Hierarchy in Strength

From the features considered above it
becomes evident that the design procedure
must endeavour to minimize the likelihood
of a shear failure, even during the largest
intensity shaking. This is achieved by
evaluating the flexural capacity of a wall
from the properties shown on the structural
drawings. With proper allowance for various
factors, to be examined in "Capacity Design
Procedures”", the likely maximum of the
moment that can be extracted from a shear
wall structure during an extreme seismic
inelastic displacement can be readily
evaluated. The shear force associated
with the development of such a moment can
then be estimated. This must be done using
conservative estimates. Subsequently the
wall can be reinforced so as to possess
corresponding shear strength.

When the shear strength of a wall is
not in excess of the flexural strength, a
situation which commonly arises in squat
shear walls, not only does stiffness
degradation occur but the attainable full
capacity of wall will also reduce with
cyclic displacements. Such an undesirable
response is shown in figure 6.

Similar procedures must be followed
to ensure that other undesirable failure
modes, such as due to bond and anchorage of
the reinforcement or sliding along
construction joints, will not occur while
the maximum flexural capacity of the wall,
usually at its base, is being developed
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several times in both directions of the
loading.

Capacity design procedures will
ensure that the desired hierarchy in the
energy dissipating mechanism can develop.
The ‘procedure is quantified and discussed
in detail in "Capacity Design Procedures".

ANALYSIS PROCEDURES:

Modelling Assumptions

Modelling of member properties -

When, for the purpose of either a
static or dynamic elastic analysis, stiff-
ness properties of various elements of
reinforced concrete shear wall structures
need be evaluated, some approximate
allowance for the effects of cracking
should be made. In this, it is convenient
to assume that reinforced concrete components
exhibit properties that are similar to those
of elements with identical geometric
configurations but made of perfectly elastic,
homogeneous and isotropic materials. For
the sake of simplicity an approximate allow-
ance for shear and anchorage deformations
is also made.

These recommendations for modelling

- may be considered to lead to acceptable
results when the primary purpose of the
elastic analysis is the determination

of internal structural actions that result
from the specified lateral static loading
or from dynamic modal responses. The
estimates given below are considered to be
satisfactory also for the purpose of
predicting the fundamental period of

the structure and for checking deflections
in order to satisfy code specified limits
for deflections or separations of non-
structural components.

In ductile earthquake resisting struct-
ures significant inelastic deformations
are expected. Consequently the allocation
of internal design actions in accordance
with an elastic analysis should be considered
as one of several acceptable solutions which
satisfy the unviolable requirements of
internal and external equilibrium. As
will be seen subsequently, deliberate
departures in the allocation of design
actions from the elastic solutions are
not only possible, but they may also be
desirable.

‘When it is necessary to make a realistic
estimate of the deformations of an elastic
wall system which is subjected to a
relatively high intensity loading, the
absolute value of the stiffness is required.
Rather than specify a stiffness, an
equivalent second moment of area of the
wall section, I, will be defined in
order to allow deflections to be estimated
for various patterns of loading. The
first loading of a wall up to and beyond
first cracking is of little interest in
design. In this recommendation only
deformations of the wall, in which cracks
have fully developed during previous
cycles of elastic loading, will be consid-
ered.

In arriving at the equivalent stiffness
of a wall section, flexural deformations of
the cracked wall, anchorage deformations at
the wall base and shear deformations after
the onset of diagonal cracking should be
considered. Detailed steps of these
approximations are set out in Appendix I.

Deformations of the foundation
structure and the supporting ground, such as
tilting or sliding, are not considered in
this study, as these produce only rigid
body displacement for the shear wall super-
structure. Such deformations should, how-
ever, be taken into account when the period
of the structure is being evaluated or when
the deformation of a shear wall is related to
that of adjacent frames or walls which are
supported on independent foundations(5)

Accordingly, for cantilever shear
walls subjected predominantly to flexural
deformations, the equivalent second moment
of area may be taken as 60% of the value
based on the uncracked gross concrete area
of the cross section, with the contribution
of reinforcement being ignored i.e.

I =0.60T1I (B-5)
e g

When elastic coupled shear walls are
considered, where, in addition to flexural
deformation, extensional distortions due to
axial loads are also being considered,
the equivalent moment of inertia and area
may be estimated as follows:

(a) For a wall subjected to axial tension

I =0.51 (B-6)
e g

Ae

0.5 A (B-7)
g

(b) For a wall subjected to compression

I, = 0.8 Ig (B-8)
Ae = Ag (B-9)
(¢) For diagonally reinforced coupling
bears
I =0.41 (B-10)
e g

(d) For conventionally reinforced coupling
beams or coupling slabs

I =0.21I (B-11)

e g

In the above expressions the subscripts
"e" and "g" refer to the "equivalent" and
"gross" properties respectively.

When only slabs connect adjacent shear
walls, the equivalent width of slab to
compute I may be taken as the width of the
opening b€tween the walls or 8 times the
thickness of the slab, whichever is less.

For cantilever walls with aspect ratios,
hw/2 , larger than 4, the effect of shear
déeformations upon stiffness may normally be
neglected. When a combination of "slender"
and "squat" shear walls provide the seismic
resistance, the latter may be allocated an
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excessive proportion of the total load if
shear distortions are not accounted for.
For such cases, i.e. when h /& < 4, it
may be assumed that wow

L - e (B-12)
Y 1.2 +F
where 30 Ie
F = —— (B-13)
hzb 2
wWow W

A more accurate estimate of flexural
deformations may be made if the ratio of
the moment causing cracking to the maximum
applied moment is evaluated and an improved
value of I_ is used in Egs. (B-12) and
(B-13) thu§

3
M 3
I = cr cr
e I I
Ma g +[ 1- Ma cr
(B~14)
where bw = web thickness of wall section
lw = horizontal length of wall
hw = height of wall
Mo, = cracking moment according to
Eg. (B-15)
Ma = maximum moment at which
deflection is computed
Icr = moment of inertia of cracked
section transformed to concrete
fr Ig
Mcr R (B-15)
Y
where fr = the modulus of rupture of
concrete = 0.62 /fé MPa
Yo = distance from centroidal axis
of gross section, neglecting
the reinforcement, to extreme
fibre in tension
1
£ = specified compressive strength
c
of concrete, MPa
Ig = second moment of area of the

gross concrete section

In Eq. (B-12) some allowance has also
been made for shear distortions and
deflections due to anchorage (pull-out)
deformations at the base of a wall, and
therefore these deformations do not need
to be calculated separately.

Deflections due to code(l) - specified
lateral static loading may be determined
with the use of the above equivalent
sectional properties. However, for
consideration of separation of non-structural
components and the checking of drift
limitations the appropriate amplification
factor given in the code(l), must be used.
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Geometric modelling -

For cantilever shear walls it will
be sufficient to assume that the sectional
properties are concentrated in the vertical
centre line of the wall. This should be
taken to pass through the centroidal axis
of the wall section, consisting of the
gross concrete area.

When cantilever walls are interconnected
at each floor by a slab it is normally
sufficient to assume that the floor will
act as a rigid diaphragm. Thereby the
positions of walls relative to each other
will remain the same during the lateral
loading of the shear wall assembly. By
neglecting wall shear deformations and those
due to torsion and restrained warping of
an open wall section, the lateral load
analysis can be reduced to that of a set
of cantilevers in which flexural distortions
only will control the compatibility of
deformations. Such analysis,based on first
principles, can properly allow for the
contribution of each wall when it is sub-
jected to deformations ?E? to floor
translations or torsion . It is to
be remembered that such an elastic analysis,
however approximate it might be, will
satisfy the requirements of static
equilibrium, and hence it will lead to a
satisfactory distribution of internal
actions among the walls of an inelastic
structure.

When two or more walls in the same
plane are interconnected by beams, as is
the case in coupled shear walls shown in
figure 17, it will be necessary to account
for more rigid end-zones where beams
frame into walls. Such structures should
be modelled as shown in figure 7a.

Standard programs written for frame
analyses(6,7) pay then be used. Alter-
natively coupled shear walls may be modelled
by replacing the discrete coupling beams
with a continuous set of elastic connecting
laminae as shown in figure 7b. The
internal actions resulting from such an
analysis can be readily converted into dis-
crete moments, shear or axial forces that
develop in each floor level. The results
of such an analysis are shown in figure 8.
The continuous curves for beam shear, moment
and axial load on the walls result from the
mathematical modelling used in figure 7b.
The stepped lines in figure 8 show the
conversion of these quantities into usable
design actions.

The analysis of wall sections

Because of the variability of wall
section shapes, design aids, such as axial
load-moment interaction charts for
rectangular column sections, cannot often
be used. The designer will have to resort
to the working out of the required flexural
reinforcement from first principles.
Programs can readily be developed for
minicomputers to carry out the section
analysis. The manual section design
usually consists of a number of successive
approximation analyses of trial sections.
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With a little experience convergence can be
fast.

One of the difficulties that arises
in the section analysis for flexural strength,
.with or without axial load, is the multi-
layered arrangement of reinforcement. A
very simple example of such a wall section
is shown in figure 9. The four sections
are intended to resist the design actions
at four different levels of the structure.
When the bending moment (assumed to be
positive) causes tension at the more
heavily reinforced right hand edge of the
section, net axial tension is expected
on the wall. On the other hand, when
flexural tension is induced at the left
hand edge of the section by (negative)
moments, axial compression is induced in
that wall. It is a typical loading
situation in one wall of a coupled shear
wall structure, such as shown in figure 7.

The moments are expressed with an
eccentricity of the axial load, measured
from the axis of the section, which, as
stated earlier, is taken through the
centroid of the gross concrete area rather
than through that of the composite section.
It is expedient to use the same reference
axis also for the analysis of the cross
section. It is evident that the plastic
centroids in tension or compression do not
coincide with the axis of the wall section.
Conseguently the maximum tension or
compression strength of the section,
involving uniform strain across the entire
wall section, will result in axial forces
that act eccentrically with respect to the
axis of the wall. These points are
shown in figure 9 by the peak values at
the top and bottom meeting points of the
four sets of curves. This representation
enables the direct use of moments and forces,
which have been derived from the analysis
of the structural system, because in both
analyses the same reference axis has been
used.

Similar moment-axial load interaction
relationships can be constructed for
different shapes of wall cross section.

An example for a channel shaped section

is shown in figure 10. It is convenient
to record in the analysis the neutral

axis positions for various combinations

of moments and axial forces, because these
give direct indication of the curvature
ductilities involved in developing the
appropriate strengths, an aspect examined
in "Limitations on Curvature Ductility".

Analyses for Equivalent Lateral Static
Loads

The selection of load

The selection of the lateral static
load, to determine the appropriate design
actions which in turn lead to the desired
strength, is in accordance with the
earth%uake provisions of the loadings
code (1), Suitable structural type
factors, S, which affect the total design
base shear, have been suggested in "Types
of Ductile Structural Walls"and elsewhere(3).
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To determine the magnitude of the
basic seismic coefficient the period of
the structure is required. This in
turn involves the estimation of the
structural stiffness at a state when,
due to high intensity elastic dynamic
excitation, the reinforced concrete
components have extensively cracked. A
suggested procedure for estimating stiff-
nesses for this purpose is outlined in
"Modelling of member properties".

With this information the intensity
of the lateral design loading and its
distribution over the height can be deter-
mined because all other parameters (such
as importance and risk factors) are spec-—
ified in the loadings code (1), Using the
appropriate model, described in the
previous section, the analysis to determine
all internal design actions may then be
carried out.

Redistribution of actions in the inelastic
structure

Because the structure is expected to
be fully plastic when it develops its
required strength, a departure from the
elastic distribution of actions in walls
linked together is acceptable as long as
the total strength of the system is not
reduced. For example the elastic analysis
for the prescribed load may have resulted
in bending moment patterns in three
identically distorted shear walls, as
shown in figure 11 by the full line
curves. It is seen that these are
proportional to the stiffnesses that were
defined in "Modelling of member properties".
It may be desirable to allocate more lcad
to wall 3 because, for example in the
presence of more axial compression, it
could resist more moment with less flexural
reinforcement (see figure 9). As the
dashed curves show the design moments for
wall 1 and wall 2 have been reduced and
those of wall 3 have been increased by the
same amount, so that no change in the
total moment of resistance occurs.

In order to ensure that there will
be no significant difference in the ductility
demands when all three walls are reguired
to develop plastic hinges, it is recommended
that moment redistribution between walls
should not change the maximum value of
the moment in any wall by more than 30%.
This is seen to be satisfied in the
example shown in figure 11. When such
redistribution is used in the design of
walls, the floor diaphragms should also
be designed to be capable of transferring
the corresponding forces to each wall.

Similar consideration suggests that,
if necessary, the maximum shear force
indicated by the elastic analysis in
couplinag beams of shear walls could be
reduced by up to 20% provided that
corresponding increases in the shear
capacities of beams at other floors are
made. With reference to figure 8, this
would mean a reduction of the shear
forces at and in the vicinity of the
3rd storey with appropriate increases
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in the lower and particularly upper
storeys, so that the total area within
curve "gq" does not decrease.

These design quantities may then be
used to proportion the wall sections so
as to provide the required dependable
strength in accordance with the Concrete
Design Code 8),

Dynamic Analyses

For most buildings in which reasonable
uniformity in layout and stiffness prevails
over the height of the structure, the
derivation of design quantities from an
elastic analysis for the code specified
lateral static loading is likely to assure
as satisfactory a seismic performance as a
more sophisticated dynamic analysis.
However, when abrupt changes, such as
setbacks or other discontinuities, occur,
the dynamic response may expose features
which may not be adequately provided for
if the static analysis is used. For such
situations the spectral modal dynamic
analysis is recommended (1/19) The
results need to be scaled and if necessary
the static load analysis may be suitably
adjusted to provide the desired design
quantities.

For unuaual buildings or for special
structures a time history dynamic analyses
may be necessary. With the development
of analysis programs(6,9), in which the
cyclic response of plastic hinges can be
modelled with a high degree of sophistic-
ation, it is now possible to predict the
response of a building to a selected ground
excitation. In this, moments, shear and
axial forces as well as inelastic deform-
ations, deflections, storey drifts etc.
are evaluated at every time step during
the specified earthquake record. Maxima
encountered during the entire duration of
the excitations are also recorded. It is
an analysis and not a design tool, and for
this reason it may be used to check the
performance of the structure as designed.
In the definition of properties the probable
strengths of the critical regions, discussed
in "Probable Strength", should be used.

The analysis may warrant certain changes to
be made.

In the selection of earthquake records
the designers should consider a represent-
ative excitation for the locality, which
might test the design for its suitability
in damage control. Such an analysis
will reveal whether adequate stiffness
has been provided. A viscous damping of
5% critical is suggested for such analyses.

Another study may be made for an earth-
quate record representing the largest
credible excitation that would be expected
in the locality during the probable life
of the building. Thereby the inelastic
deformations, such as plastic hinge
rotations, and maximum actions, such as
shear forces across inelastic regions
of shear walls, can be predicted and hence
compared with values that were envisaged
in the design. For such a study a
viscous damping of 8-10% of critical may

be used.
Torsion

As in all structures in seismic areas,
symmetry in structural layout should be
aimed at. This will reduce torsional
effect due to the noncoincidence of the
centre of rigidity, CR, (centre of
stiffness) and the centre of gravity,

CG, (centre of mass). Typical eccentric-
ities with respect to the two principal
actions of design loading, e_and e_, are
shown for a set of shear walfs of #n
apartment building. in figure 12. Deliberate
eccentricities should be avoided, if
possible, because uneven onset of plast-
ification during large excitations may
aggravate eccentricity and this in turn
may lead to excessive ductility demand

in lateral load resisting elements
situation far away from the centre of
rotation.

An example of the unintended inelastic
response of two ductile shear walls is
illustrated in figure 1l3a. Because the
centre of the mass, CG, is approximately
at the centre of the plan, approximately
one half of the induced earthquake load,
E, will have to be resisted by each of
the end walls at A and B. It may be
difficult to prevent Wall A from having
a lateral load carrying capacity consider-
ably in excess of that on Wall B. Hence
energy dissipation due to inelastic
deformation may well be restricted to
Wall Bonly which, as a result of this,
could be subjected to a displacement, A4,
much larger than expected. Irrespective
of the relative stiffness or strength of
the two shear walls, structures in which
only two principal planes of lateral
resistance exist parallel to either major
axes, are likely to be torsionally
unstable during large inelastic seismic
excitations.

The structural layout shown in figure
13b is symmetrical with respect to the
earthquake loading E. It is seen that
any eccentricity introduced during the
inelastic response of the two end walls
will result in torsion which is readily
restricted by three walls acting in the
perpendicular direction. These walls
are likely to remain elastic and hence
they will ensure a uniform inelastic
translation of each floor, thereby reducing
the ductility demand on each of the end
walls at A and B.

The example structure shown in figure
13b also shows that, in spite of consider-
able eccentricity, it is likely to be much
more tolerant with respect to horizontal
earthquake loading, H, in the other
direction. The very significant torsional
resistance of the two end walls, at A and
B, can ensure that the other three walls
will dissipate seismic energy because of
approximately equal inelastic wall
diaplacements in the direction of the
excitation H. Figure 13b thus shows a
desirable, torsionally stable structural
layout in which the full utilization of
walls in one direction of seismic actions
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Fig. 13 - The layout of Shear Walls affects the Torsional
Stability of the Lateral Load Resisting System.
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is enhanced by (elastic) walls acting in the
perpendicular direction by preventing
inelastic storey twist.

Small single shear cores are
particularly vulnerable to torsional
instability.

CAPACITY DESIGN PROCEDURES:

The Definition of Strength

Before a hierarchy in the establish-
ment of desirable energy dissipating mech-
anisms can be established, it is necessary
to define the various strengths that might
have to be quantified in the design.

These have been studied in recent public-
ations(2/8) and for this reason only a
brief summary of the definitions and their
relative values are given here.

Ideal strength

The ideal or nominal strength of a
section is obtained from established theory
preducting failure behaviour of the section,
based on assumed section geometry, the
actual reinforcement provided and ,
specified material strengths, such as fc
and fy.

Dependable strength

To allow for the variations in strength
properties and the nature and consequence
of the failure, only a fraction of the ideal
strength is relied upon to meet the load
demand specified by the loadings code (1),
Therefore strength reduction factors, ¢,
are introduced(8) o arrive at the depend-
able or reliable strength thus:

Dependable Strength = ¢ Ideal Strength

Probable strength

Routine testing of materials or
components indicates the probable strength
attainable by prototype components in the
structure. The designer will seldom
require this information. However, when
the likely dynamic response of a shear
wall structure during a selected ground
excitation is to be studied analytically,
as discussed in "Dynamic Analyses", it is
more appropriate to consider the probable
properties of materials at critical member
sections.

Overstrength

The overstrength takes into account
all the possible factors that may cause a
strength increase above the ideal strength.
These include steel strength higher than
the specified yield strength and the
additional strength due to strain hardening
at large deformations, concrete strength
higher than specified, section sizes larger
than assumed in the initial design,
increased axial compression strength in
flexural members due to lateral confinement
of the concrete, and participation of
additional reinforcement such as that
placed nearby for construction purposes.

Relationship between strengths

When using Grade 275 flexural rein-
forcement made in New Zealand the following
relationships, based on the actual reinforce-
ment provided, may be used to determine the
flexural strengths of members -

(i) Dependable Strength = 0.90 Ideal
Strength
(ii) Probable Strength = 1.15 Ideal
Strength
(iii) Overstrength = 1.25 Ideal
Strength
(iv) Overstrength = 1.39 Dependable
Strength
(v) Probable Strength = 0.90 Over-
strength
(vi) Probable Strength - 1.28 Dependable
Strength

It is preferable, however, to determine
these values from measured properties of
the steel to be used.

It is recommended that wherever design
actions, such as shear forces across shear
walls, are derived from the flexural over-
strength of the wall, the ideal strength
be considered to be sufficient to resist it.
Whereas in strength design the actions
derived from factored loads, such as moment,
Mu' or shear, Vu, need to be equal or smaller
than the corresponding dependable strength
provided, such as ¢M. or ¢V., where M, and
Vs refer to ideal strengthS of a secTion, in
capacity design the criteria should be met:

o o}

M~ € M. or Vg V.,

i i (B-16)

where M° and v° are the design actions at a
particular section derived from capacity
design procedures.

Cantilever Walls

The determination of the flexural and
shear load on cantilever walls, taking into
account moment redistribution as outlined
in "Redistribution of actions in the
inelastic structure", is a simple procedure.

The consideration of flexure and overstrength

When the appropriately factored gravity
forces are also considered the required
flexural reinforcement can be readily
determined from the principles reviewed in
'The analysis of wall sections’'. In this
the designer should attempt to provide the
minimum flexural reinforcement to just
satisfy the dependable moment demand at
the wall base. Apart from economy it
should be the designer's aim to keep the
overstrength of the wall to the minimum,
otherwise demands for shear resistance and
on the foundations might be unnecessarily
compounded. In very lightly loaded walls,
minimum requirement for wall reinforcement
may override this criterion. The flexural
overstrength is expressed by the "overstrength
factor", ¢O, which is defined as follows:



¢ = overstrength moment of resistance - MP
o} moment resulting from code loading 7
“code
(B-17)

where both moments refer to the base
‘section of the wall.

Even though in most walls Grade 380
reinforcement will be used, the flexural
overstrength at the base may be assumed
to be only 1.25 times the ideal flexural
strength of that section. The reason
for this.is that cantilever walls will
seldom be required to develop plastic
hinge rotations involving excessive strain
hardening of the tensile reinforcement.
However, if wall configuration, slenderness
or load demand indicate that tensile strains
in excess of 10 times yield strain may be
involved with Grade 380 reinforcement,
it should be assumed that ¢ = 1.6. It
should also be appreciated fhat in compress-
ion dominated wall sections the flexural
resistance will be significantly larger
if the concrete strength at the time of
the earthquake is much in excess of the
specified value f}.

Moment design envelopes

Once the flexural overstrength of a
cantilever wall is determined at its base,
it is necessary to define the reduction
of moment demand at upper floors.

This used to be done by utilising
the bending moment diagram. It is to be
recognized, however, that the moment
envelope that would be obtained from a
dynamic analysis is quite different from
the bending moment diagram drawn for the
specified lateral static.load. This has
been identified from modal spectral
analyses as well as from time history
dynamic studies(13), Typical bending
moment envelopes for 20 storey cantilever
shear walls with different base yield
moment capacities, subjected to a particular
ground excitation, are shown in figure 14.
It is seen that there is an approximate
linear variation of moment demand during
dynamic excitations.

If the flexural reinforcement in a
cantilever wall were to be curtailed accord-
ing to the bending moment diagram, then
flexural yielding (plastic hinges) could
occur anywhere along the height of the
building. This would be undesirable
because potential plastic hinges do require
special detailing, and hence more transverse
reinforcement. Moreover, flexural yielding
reduces the potential shear resisting
mechanisms, and this again would require
additional (horizontal) shear reinforcement
at all levels where hinging might occur.
This is discussed in "Control of Diagonal
tension and compression".

For the reasons enumerated above it
is recommended that the flexural reinforce-
ment in a cantilever wall be curtailed
so as to give a linear variation of moment
of resistance. The recommendation is
illustrated in figure 15. The linear
envelope, shown by the dashed line, should
be displaced by a distance equal to the
horizontal length of the wall, Qw. This
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allows for the fact that due to shear the
internal flexural tension in a beam section
at a section is larger than the bendi?g
moment at that section would indicate '8).
Accordingly the design envelope, indicating
the minimum ideal moment of resistance to
be provided, is obtained. Vertical
flexural bars in the cantilever wall, to

be curtailed must extend beyond the section
indicated by the design envelope of figure
15, by at least the development length

for such bar(8) .

Flexural ductility of cantilever walls

To ensure that a cantilever wall can
sustain a substantial portion of the
intended lateral load at a given displace-
ment ductility ratio, u,, it is necessary
that it can develop in its plastic hinge
at the base a certain curvature ductility
ratio, u,. These ductility ratios are

traditionally defined as follows:

Displacement ductility ratio:

My = fg (B-18)
A
Y
Curvature ductility ratio:
_ ¢
Yo T 58 (B-19)
Y

where A and A_ are the deflections at the
top of Fhe canfilever at the ultimate state
and at the onset of yielding and ¢, and

¢ are the corresponding curvatures i.e.
rétations of the section, at the base of
the cantilever.

The relationship between the curvature
ductility of the base section and the
displacement ductility of the wall will
depend on the lenoth of the plastic hinge
at the base(2) and the wall height to
horizontal length ratio, h /& . The
variation of curvature ducgilyty demand
with h /% for various displacement demands
is shown iIn figure 16. The dark bands
represent the limits for the length of the
plastic hinge, as obtained from two
different proposed equations(14), It is
seen that for slender cantilever walls
which are expected to be subjected to a
displacement ductility demand of four,
very considerable curvature ductility will
need to be developed at the base. This
will need to be taken into consideration
when the detailing of the potential plastic
hinge zone is being undertaken. (See
"Satisfying Ductility Demands").

Shear strength of cantilever walls

It was erphasized in the previous
sections that if a shear failure is to be
avoided, the shear strength of a wall must
be in excess of the maximum likely shear
demand. Therefore the shear strencth
must be at lease egual to the shear
associated with the flexural overstrength
of the wall i.e. Vmin 3 ¢ovcode'

It has been demonstrated that during
the inelastic dynamic response of a shear

wall, with a given base hinge moment capacity,
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considerably larger shear forces can be
generated_than those predicted by static
analysis For this reason the design
shear forces must be magnified further.
Therefore cantilever shear walls at all
levels should possess an ideal shear
-capacity, Vi’ of not less than

v =w_ ¢ (B-20)

wall v ‘o Vcode
where V is the shear demand derived
from.coﬁg?i) loading, ¢ _was defined by
Eg. (B-17) and the dynaﬁic shear
magnification factor is given by Eqg. (B-21)
- for buildings up to 5 storeys high

w, = 0.1N + 0.9 (B-21)

where N is the number of storeys. For
walls taller than 5 storeys the value of
w_ is given in Table B-I( However,
tfe ideal shear strength need not exceed

< (4/8) Vv (B-22)

vwall code

It may be that

TABLE B-1
the flexural
DYNAMIC SHEAR w capacity pro-

MAGNIFICATION FACTOR "v vided at the

base of the

Number of Storeys w structure is
v so large that
inelastic
é Eg g Eq.{B;Zl) response of
10 to 14 1'7 tbe shear wall
15 and over 1.8 will become
) unlikely. For

such situations
Eq. (B-22) sets an upper limit whereby the
product w ¢o need not be larger than 4/S.
For example a single 8 storey cantilever
shear wall need not possess an ideal

shear strength in excess-.-of 4/1.2 = 3.33

times the code specified shear load, Vcode.

The provisions to meet the design
shear load Vw 11 from Eq. (B-20) are
given in "Cof¥¥ol of shear failure".

Coupled Shear Walls

In the following sections a recommended
step by step capacity design procedure
for coupled shear walls is outlined.
When necessary reference should be made to
figure 7 or figure 17.

Geometric review

Before the static analysis procedure
commences the geometry of the structure
should be reviewed to ensure that in the
critical zones compact sections, suitable
for energy dissipation, will result.
Section configurations should satisfy
criteria outlined in "Stability".

Lateral static load

The appropriate lateral static load,
in accordance with the loadings code (1)
is to be determined. To do this it
might be necessary to estimate the probable
value, S_, of the structural type factor
S, recommended in "Types of Ductile
Structural Walls" (b).

123

Elastic analysis

With the evaluation of the lateral
static load the complete analysis for the
resulting internal structural actions,
such as moments, forces etc. can be
carried out. In this the modelling
assumption of "Modelling Assumptions"
should be observed. Typical results
are shown in figure 8.

Confirmation of the structural type factor

Having obtained the moments and axial
forces at the base of the structure the
moment parameter

A=12 (B-1)

M
o

as discussed in "Types of Ductile Structural
Walls" (b), can be determined. The
significance of the parameter may also be
seen in figure 18. With the use Eq.

(B-3) the exact required value of the
structural type factor, S can be found.

If this differs from that assumed earlier
i.e. S_, all quantities of the elastic
analysis are simply adjusted by the
multiplier S/sp.

Checking of foundation loads

To avoid unnecessary design comput-
ations, at this stacge it should be checked
whether the foundation structure for the
coupled shear walls would be capable of
transmitting at least 1.5 times the over-
turning moment, M , received from the
superstructure (see figure 17), to the
foundation material (soil). It is to
be remembered that in a carefully designed
superstructure, in which no excess strength
of any kind has been allowed to develop,
1.4 times the overturning moment resulting
from code loading M_ will be mobilized
during large inelas®ic displacements.

(See "Relationship between strengths").
Hence the foundation system must have a
potential strength in excess of 1.4 M,
otherwise the intended energy dissipa®ion
in the superstructure may not develop.(s)

Design of coupling beams

Taking flexure and shear into account
the coupling beams at each floor can be
designed. Normally diagonal bars in
cages(z) should be used, preferably with
Grade 275 reinforcement. A strength
reduction factor of ¢ = 0.9 is appropriate.
Particular attention should be given to
the anchorage of caged groups of bars
and to ties which should prevent inelastic
buckling of individual diagonal bars.

(See "Detailing of Coupling Beams").

The beam reinforcement should match as
closely as possible the load demand.
Excessive coupling beam strength may lead
to subsequent difficulties in the design
of walls and foundations.

Determination of actions on the walls

In order to find the necessary
vertical reinforcement in each of the
coupled walls (figure 17) at the critical
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base section, the following loading cases
should be considered:

i) Pe = Pe - 0.9P_ axial tension (or
d smal? compression) and Ml
ii)>p_ =P + P+ P axial compression
€ ed and MZLR
where Pe = axial design load including
earthquake effects
Pe axial tension or compression
q induced in the wall by the
lateral static loading
PD = axial compression due to dead
load
PL = axial compression due to reduced
R 1live load LR
Ml = moment at the base developed

concurrently with earthquake
induced axial tension load
(figure 17c¢)

M2 = moment at the base developed
concurrently with earthquake
induced axial compression load
(figure 17c¢)

iii) If case (i) above is found to result
in large demand for tension reinforce-
ment or for other reasons, a redistri-
bution of the design moments from the
tension wall to the compression wall
may be carried out in accordance with
'Redistribution of actions in the
inelastic structure', within the
following limits:

(a) Ml > 0.7 Ml

| J— - [
(b) M2 M2 + Ml M1 < 1.3 M

2

where M! and M! are the design moments
for the tensio% and compression walls
respectively, after the moment
redistribution has been carried out.

In the above three steps, which would
complete the strength design of the
structure, a capacity reduction factor of
¢ = 0.9 may be used for all cases. The
justification for this is considered to
result from a subsequent requirement,
according to which compression dominated
wall sections specifically need to be
confined to ensure sufficient curvature
ductility.

Using these quantities the vertical
flexural reinforcement for each wall, with
Grade 275 or Grade 380 steel, can now be
determined in accordance with " The
analysis of wall sections'.

Overcapacity of coupling beams

In order to ensure that the shear
strength of the coupled shear wall
structure will not be exceeded and that the
maximum load demand on the foundation is

the shear overcapacity, Q?, of each

coupling beam, as detaileﬁ, based on a yield
strength of the diagonal reinforcement

of 1.25 £_ 3 345 MPa is determined.

Where sla¥s, framing into coupling beams,
contain reinforcement parallel to the
coupling beams which is siognificant when
compared with the reinforcement provided
within the beam only, the possible
contribution of some of this the reinforce-
ment to the shear capacity of coupling beams
should also be considered in computing
overstrength.

Earthguake induced axial loads

The maximum feasible axial load induced
in one of the coupled walls would be obtained
from the summation of all the c8upling beam
shear forces at overcapacity, Qi’ applied to

the wall above the section that is considered.

For structures with several storeys this

may be an unnecessarily conservative estimate,

and accordingly it is recommended that the
wall axial load at overstrength be estimated
with

o

o = -2 -
Peq = (1 80). Q; (B-23)

-3

where n = number of floors above level 1i.
The value of n in Eg. (B-23) should not be
taken larger than 20.

The flexural overcapacity of the entire
structure

In order to estimate the maximum likely
overturning moment that could be developed
in the fully plastic mechanism of the
coupled shear wall structure, it is
necessary to assume gravity loads that are
realistic and consistent with such a

seismic event. Accordingly, for this purpose

only, the total overstrength axial loads
to be sustained by the walls should be
estimated as follows:

i) For tension of minimum compression

(] o

ii) For compression

It is now possible to estimate the
flexural overstrength capacity of each
wall section, as detailed, that may be
developed concurrently with the above
axial forces. The moments of resistance,
which may be based on material strengths
defined by 1.25f_ and 1.25f', so derived
for the tension ¥nd compresgion walls
respectively, are M; and M,. In
similarity to Eq. (é—l?) tﬁe overstrength
factor for the entire coupled shear wall
structure may be obtained from

(o] (o] o
_ My + M, + P 2 N
0o=_1 "2 —eg (B-24)
M
(o]

In accordance with the assumed strength

properties of "Relationship between strengths"
the value of ¢o so obtained should not be

less than 1.397 If it is, the design should
be checked for the error.

properly assessed, i.e. to fulfill the
intent of "HierarchyinEnergy Dissipation",
the overstrength of the potential plastic
regions must be estimated. Accordingly
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Wall shear forces

In similarity to the approach
employed in the section “Shear strength
of cantilever walls" for cantilever shear
walls, the maximum shear force for one
wall of a coupled shear wall structure
may be obtained from

M3
V. =
i,wall wv¢o Veode ; i = 1, 2
MO+ MO
1 2
(B-25)
where w, = dynamic shear magnification
factor in accordance with
Eg. (B-20)

Vcode=shear force on the entire
shear wall structure at any
level, derived by the initial
elastic analysis for code
loading(l) with the appropriate
S factor.

Wy, ¢o $ 4/S in accordance with
Eg. (B-22)

The bracketed term in Eg. (B-25)
makes an approximate allowance for the
distribution of shear forces between
the two walls, which, at the development
of overstrength, is likely to be different
from that established with the initial
elastic analysis. It also takes into
account the approximate redistribution
of shear forces that may have resulted
from the deliberate redistribution of
design moments from the tension to the
compression wall.

The required horizontal shear
reinforcement may be determined now.
In assessing the contribution of the
concrete shear resisting mechanisnm,
the effects of the axial forces P° and
PS, as appropriate should be takenl into
aCcount.

Confinement of wall sections

From the load combinations considered
above the positions of the neutral axes
relative to the compressed edges of the
wall sections are readily obtained. From
the regions of the wall section over which,
in accordance with the section *'Confinement
of Wall Regions" anti-buckling and/or
confining transverse reinforcement is
required, this reinforcement can now be
determined.

Curtailment of vertical flexural
reinforcement

For the purpose of establishing the
curtailment of the principal vertical
wall reinforcement, a linear bending moment
envelope along the height of each wall
should be assumed, as shown in figure 19a.
This is intended to ensure that the
likelihood of flexural yielding due to
higher mode dynamic responses along the
heicht of the wall is minimized. Details
for the justification of such an envelope

were examined in the section "Moment

design envelopes'". In a study, in which
the inelastic dynamic response of a

coupled shear wall was computed, the moment
envelopes for responses to three different
ground excitations, shown in figure 19,
were obtained

Foundation design

The actions at the development of the
ogerstrength of the superstructure, Pl,
P M°, MO and wall shear forces V., and
V ’ sﬁoulé be used as loading on the
fOundations. For ductile coupled shear
walls, the foundation structure should
be capable of absorbing these actions
at its ideal strength capacity.

SATISFYING DUCTILITY DEMANDS

Stability

When part of a thin wall section is
subjected to large compression strains,
the danger of premature failure by
instability arises. This is the case
when a large neutral axis depth is required
in the plastic hinge zone of the wall,
as shown in figure 20, and the length of
the plastic hinge is large i.e. one
storey hich or more. The problem is
compounded when cyclic inelastic deform-
ations occur. Instability should not
be permitted to govern strength of ductile
shear walls.

In the absence of information on the
"compactness" of reinforced concrete wall
sections, existing code rules , rele-
vant to short columns, are best considered.
For such columns the effective height t?
widath ratio, Rn/b, should not exceed 10 16)_

The relevance of such a code require-
ment to a shear wall may be studied with
the aid of figure 20. For a certain load
combination the computed neutral axis
depth may be c,, so that a considerable
portion of the“wall section will be subject
to compression. Near the extreme compress-
ion fibre, where, in accordance with
accepted assumptions, the concrete strain
at ideal flexural capacity is taken as
€ = 0.003, instability may occur unless
tfis strain pattern is restricted vertically
to a very short plastic hince length.
Moreover, the strain profile marked (2)
in figure 20 shows that very limited
curvature ductility would be available at
the attainment of the ideal strength of
the section. To satisfy the intended
displacement ductility demand for the
shear wall system, a strain profile
shown by line (2') may need to be developed.
Such larcge concrete compression strains,
e , could only develop if the concrete
in this zone is confined, and this will
be examined in a later section. The
phenomenon is fortunately rare, but it
emphasizes the need for considering
instability. It occurs more commonly
when a wall has a large tension flange,
such as shown in figure 22 and figure 35.

In the absence of experimental
evidence intuitive judoerent was used to
recommend that, with the exceptions to be
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set out subsequently, in the outer half

of the conventionally computed compression
zone, the wall thickness b should not be
less than one tenth of the clear vertical
distance between floors or other effective
lines of lateral support, £ _. Considering
the 'strain pettern (2) in figure 20,

this zone extends over s distance of 0.5c,,
as shown with cross shading. This is an
area over which the concrete compression
strain will exceed 0.0015 when the strain
in the extreme compression fibre of the
section, consistant with the determination
of the ideal. flexural strength, attains its
assumed maximum value of 0.003.

When the computed neutral axis
depth is small, as shown by the strain
distribution (1) in figure 20, the com-
pressed area may be so small that adjacent
parts of the wall will stabilize it.
Accordingly, when the fibre of 0.0015
compression strain is within a distance
of the lesser of 2b or 0.15 % from the
compressed edge, the b > 2 /18 1limit
should not need to be compTied with. In
terms of neutral axis depth this criteria
is met when ¢ ¢ 4b_or c ¢ 0.3 &, which-
ever is less. The strain profile (1),
which occurs commonly in lightly reinforced
walls with small gravity load, clearly
satisfies this condition.

It may be assumed that only in
buildings 3 storeys or higher would the
plastic hinge length at the base, extendinc
toward the first floor, be large enough
to warrant an examination of instability
criteria.

Certain components of walls, such as
shown in figure 21, provide continuous
lateral support to adjacent compressed
elements. Therefore it is considered
that any part of a wall, subjected to
computed strains larger than 0.0015, which
is within a distance of 3b of such a
line of support, should be exempted from
slenderness limitation. Figure 2 shows
a number of locations that are exempt.

The shaded part of the flange is considered
to be too remote to be effectively
restrained by the web portion of the wall

and hence it should comply with the b > 2_/10
slenderness limitation. In the absence "
of a flange, the width of which is at least

%2 /5, a boundary element may be formed

that satisfies the slenderness limit.

These latter two cases are also shown in
figure 21.

Limitations on Curvature Ductility

By simple limitations of the amount
of flexural tension reinforcement in
beam sections, it can be ensured that
adequate curvature ductility, to meet the
intents of seismic design, will be
available. Because of the variety of
cross sectional shapes and arrangements
of reinforcements that can be used,
and the presence of some axial load,
the availability of ductility in shear
walls cannot be checked by the simple
process that is used for rectangular
beams or sections.

In the analysis of wall sections for
flexure and axial load, the neutral axis
depth, c, is always determined. Hence
the ratio of c¢/% , an indicator of the
curvature ductillty required at the
development of the ideal strength, (figure
21) can be readily found. Various
strain profiles, associated with a maximum
assumed concrete compression strain of € =
0.003 are shown by dashed lines in figurés
20 and 22. It is seen that different
neutral axis depths, c, and Cyy for
different wall conficurations“can give very
different curvature ductilities.

The curvature ductility demand in the
plastic hinge zone of cantilever walls was
related to the displacement ductility in
'Flexural ductility of cantilever walls'.
Typical relationships were also presented
in figure 16. It will be seen that in a
relatively slender shear wall with h /% = 8,
a curvature ductility of approximateYy ¥
is required if the displacement ductility
is to be 4. The yield curvature of a
section may be approximated by ¢_ =
(e, + €,0)/%, = 0.0025/2  where Ye  and
€.e are the steel and concrete strains
at°the extreme edoges when the yield strain
of the reinforcement is just reached.

Hence the desired ultimate curvature will

be ¢u = 1l¢_ = 0.0275/2w. Current

strength computations are based on the
conservative assumption that € = 0.003.

It is found, however, that a s%rain of

0.004 can be readily attained in the extreme
compression fibre of a section before

crushing of the concrete commences . By
assuming that the maximum concrete strain will
reach the value of 0.004 it is found that

the neutral axis depth at this curvature

needs to be c = 0.004 RW/0.0275 = O.l452w.

As figure 16 shows however, for hw/l
ratios less than 8 lesser curvature
ductilities will suffice.

w

The above discussion was based on
cantilevers, for which a structural type
factor of S = 1 is relevant, and for which
a displacement ductility demand of 4 might
arise when the intended base overstrength,
corresponding with ¢ = 1.39, is developed.
For walls with largef¥ S factors or larger
unintended overstrength (i.e. when ¢ > 1.39),
the displacement ductility requirement may
be assumed to be proportionally reduced.
Consequently the critical neutral axis depth
can be conservatively assumed to be

c. = 0.10 ¢O Slw (B-26)

C

If desired, the designer could carry out
a more refined analysis, using Eg. (B-27)
which may show that a larger neutral axis
depth would provide the desired curvature
ductility.
8.6 ¢ S&
o w

c =
c

(4 - 0.75) (17 + hw/lw) (B-27)

Whenever the computed neutral axis depth
for the design loading on the given section
exceeds the critical value c¢_, given by Eqg.
(B-26), it will be necessary to assume that
increased ductility can be attained only at
the expense of increased concrete compression
strains.



It is seen on the left hand side of
figure 22, showing the channel shaped
cross section of a single cantilever wall,
that, because of the large available
concrete compression area, very large
curvature ductility is associated with

- the development of the flexural strength.

A given displacement ductility, however,
may require only a strain pattern shown

by the heavy line. It is evident that
this curvature could only be attained in
the other wall section, shown on the right
in figure 22, if the concrete compression
strains increase considerably. The

same relationship can be seen between the
strain patterns (1) and (2') shown in
figure 20. Excessive compression strains
would lead to failure of the section unless
the concrete in the core of the compression
zone is suitably confined. This aspect

of the desion is examined in the next
section.

Confinement of Wall Regions

From the examination of curvature
relationships in the simple terms of c/%
ratio, it is seen that in cases when the”
computed neutral axis is larger than the
critical value c given by Egq. (B-26)
or Egq. (B-27), the compression region of
the wall needs to be confined. It does
not seem necessary to confine the entire
compression zone. It is suggested,
however, that the outer half of it be
confined. Accordingly the following
simple rules are suggested.

Region of confinement

When the neutral axis depth in the
potential yield regions of a wall, computed
for the most adverse comblnatlon of design
loadings, exceeds

C. = 0.10 ¢O Slw (B-26)
the outer half of the compression zone,
where the compression strain, computed
when the ideal flexural strength of the
section is being determined, exceeds
0.0015, should be provided with confining
reinforcement. This confining transverse
reinforcement should extend vertically
over the probable plastic hinge length,
which for this purpose should be assumed
to be equal to the length of the wall 2
as shown in figure 15 and figure 19.

Confining reinforcement

The principles of concrete confinement
(2) to be used are those relevant to column
sections, with the exceptions that very
rarely will the need arise to confine
the entire section of a shear wall.
Accordingly it is recommended that rect-
angular or polygonal hoops and supplementary
ties, surrounding the longitudinal bars
in the region to be confined, should be
used so that
* £
A, = 0.3 s h" (325 - 1) £ (0.5 + 0.95%)
w

sh h Ac fyh

(B-28)
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- " £! C
Ash = 0.12 Sh h c (0.5 + 0.9@;) (B-29)

yh

whichever is greater, where the ratio 0/2
need not be taken more than 0.8.

In the above equations:

Ash = total effective area of hoops
and supplementary cross ties in
direction under consideration
within spacing Sy, mm

Sy = vertical centre to centre spacing
of hoop sets, mm
A * = gross area of the outer half of
g wall section which is subjected

to compression strains mm

A * = area of concrete core in the
outer half of section which is
subjected to compression strains,
measured to outside of peripheral
hoop legs, mm

fé = specified compression strength of
concrete, MPa

£ = specified yield strength of hoop

vh .
or supplementary cross tie steel,
MPa

h" = dimension of concrete core of

section measured perpendicular
to the direction of the hoop bars,
mm

These equatlo?ﬁ are similar to those
developed by Park ( for columns. The
area to be confined is thus extending to
0.5c, from the compressed edge as shown
by c¥oss hatching in the examples of
figures 20 and 22.

For the confinement to be effective
the vertical spacing of hoops or supple-
mentary ties, s,, should not exceed 6 times
the diameter of vertical bars in the confined
part of the wall section, one third of the
thickness of the confined wall or 150 mm,
whichever is less.

An application of this procedure is
given in Appendix IT.

Confinement of longitudinal bars

A secondary purpose of confinement
is to prevent the buckling of the principal
vertical wall reinforcement where the same
may be subjected to yielding in compression.
It is therefore recommended that in regions
of potential yielding of the longitudinal
reinforcement within a wall with two layers
of reinforcement, where the longitudinal
reinforcement ratio p computed from Eqg.
(B-31), exceeds 2/f transverse tie
reinforcement, Satlnglnq the following
requirements, should be provided:

(a) Ties suitably shaped should be so
arranced that each longitudinal bar or
bundle of bars, placed close to the wall
surface, is restrained against buckling
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(b)

(c)

(d)

by a 90° bend or at least a 135°
standard hook of a tie. When two

or more bars, at not more than 200 mm

centres apart, are so restrained,
any bars between them should be
exempted from this requirement.

The area of one leg of a tie, Ate’
in the direction of potential

buckling of the longitudinal bar,

should be computed from Eg. (B-30)

where IA, is the sum of the areas

of the ldéngitudinal bars reliant

on the tie including the tributary

area of any bars exempted from being
tied in accordance with (a) above.

N _ ZAb fy iﬁ_
te 16 fyh 100

(B-30)

Longitudinal bars centered more than
75 mm from the inner face of stirrup
ties need not be considered in
determining the value of ZAb.

The spacing of ties along the
longitudinal bars should not exceed
six times the diameter of the
longitudinal bar to be restrained.

Where applicable, ties may be
assumed to contribute to both the
shear strength of a wall element
and the confinement of the concrete
core.

The vertical reinforcement ratio
that determines the need for
transverse ties should be computed
from

ZAb
pz = ES— (B—3l)
v
where the terms of the equation,
together with the interpretation of
the above requirements are shown in
figure 23. The interpretation of
Eg. (B-31) with reference to the
wall return at the left hand end of

figure 23 is as follows : Py = 2Ab/bsv.

The requirements of transverse

reinforcement is a shear wall section are
summarized in figure 24 as follows:

(a)

(b)

(c)

For the direction of loading the

computed neutral axis depth c exceeds
-the critical value c_, given by Eqg.

(26) or Eg. (27), herice confining
reinforcement over the outer half of
the compression zone, shown by cross
hatching, should be provided in

accordance with "Confining reinforce-

ment'.

In the web portion of the channel
shaped wall, within the outer half
of the computed neutral axis depth,
vertical bars need be confined
(using antibuckling ties) in
accordance with “Confinement of
longitudinal bars'" only if p
The affected areas are shadeé.

In all other areas, which are unshaded

> 2/f .
/ Yy

the transverse (horizontal)
reinforcement need only satisfy the
requirements for shear and its
ratio to the concrete area should
not be less than 0.0025.

Longitudinal Wall Reinforcement

For practical reasons the ratio of
longitudinal i.e. vertical reinforcement,
p,, (Eg. (B-31)) over any part of wall
sﬁould not be less than 0.7/f. nor more
than 17/ . y

In walls which are thicker than 200 mm
or when the design shear stress exceeds
0.3 /fz MPa, at least two layers of
reinforcement should be used, one near
each side of the wall.

The diameter of bars used in any part
of a wall should not exceed one tenth of
the thickness of the wall. The spacing
between longitudinal bars should not
exceed twice the thickness of the wall
nor 400 mm.

In regions where the wall section is
required to be confined the spacing of
vertical bars should not exceed 200 mm.

Control of Shear Failure

Shear forces and shear stresses

The derivation of the desiagn shear
forces, using the principles of capacity
design, have been outlined previously
for cantilever walls ("Shear strength of
cantilever walls") and in “"Wall shear
forces" for coupled shear wall structures.
Shear strength provided in accordance
with these shear forces is expected to
ensure ductile flexural response of walls
with an acceptable amount of reduction in
enerqgy dissipation during hysteretic
response. For convenience and in keeping
with traditional practice these forces
may be converted into stresses thus

v, = Vwall (B-32)
b,d

where the effective depth need not be

taken less than 0.8 £ .. Eq. (B-32)

should be considered as an index rather
than an attempt to quantify a stress

level at any particular part of the wall
section. From observed behaviour of
walls, using this expression, certain
limits have been set to ensure satisfactory
performance.

Shear may lead to different types
of failure, such as diagonal tension,
diagonal compression and sliding, each
of which are examined subsequently. In
general the principles relevant to the
design_of ordinary reinforced concrete
beams (2) are also applicable to structural
walls.

Control of diagonal tension and compression

Two areas within a wall must be
distinguished for which the design procedures
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are different. These are the potential
plastic hinge zone and the remainder of

the wall, which is expected to remain free
of significant flexural yielding during any
kind of dynamic excitation. In the design
to control diagonal tension, one part of
the shear strength is assumed to be provided
by the shear reinforcement (v_) and the
other by mechanisms collectivély designated
as the contribution of the concrete (Vc).
Accordingly

v, = V_ + Vv (B-33)
i c s

In this the contribution of the
"concrete" to shear resistance, v_, is
assumed to be zero in the potentigl plastic
hinge zone, unless the minimum design axial
load, N_, produces an average compression
stress O0f 0.1 f! or more over the gross
concrete area, , including flanges, in
which case

v, = %- ‘/(il_ _ f_c) (B-34)
Ag 10

The value of v_ outside the potential
plastic hinge Zone may be taken as that
specified for beams(8) subjected to gravity
(non-seismic) loading only. This will
normally result in significant reduction

in the web reinforcement in the upper

parts of a shear wall.

Web reinforcement, consisting of
horizontal bars, fully anchored at the
extremities of the wall section, must be
provided so that

Vg by, 5 - (v - V) bs (B-35)

f £
Yy y

A =
v

These provisions should ensure that
diagonal tension failure across the wall
will never occur. To guard against
diagonal compression failure, which may
occur in flanged walls, that are over-
reinforced for shear, codes'®r
set an upper limit for the value of v,.
These values were based on tests with
monotonic loading. Recent tests by the
Portland Cement Association(1l) and the
University of Berkeley have demonstrated,
however, that web crushing in the plastic
hinge zone may occur after only a few
cycles of reversed loading involving
displacement ductilities of 4 or more.
When the imposed ductilities were only 3
or less, the shear stresses stipulated
by existing codes could be repeatedly
attained. Web crushing may eventually
lead to apparent sliding shear failure,
as shown in figure 25. To prevent such
failure the ideal shear strength of the
wall should be such that

V. <
i, max

(B-36)

It is seen that for cantilever shear

walls with ¢ = 1.39 and a structural
type factor 6f S = 1.6, in which limited

(0.3 ¢O S + 0.16) Vfé < 0.8 Yfé (MPa)

displacement ductility demand is expected,
the design shear stress will attain the
maximum value considered for all structures
i.e. 0.8 V£' Mmpa. On the other hand for

a coupled sﬁear wall structure with

¢ = 1.39 and S = 0.8, v, = 0.49 Vf' .
o i,max c

Control of sliding shear

It is likely that sliding in the
plastic hinges of walls is better controlled
by conventional reinforcement than it is in
beams where sliding, resulting from high
intensity reversed shear loading, can
significantly affect the hysteretic response
(see figure 4). The reasons for this are
that most shear walls carry some axial
compression due to gravity and this assists
in closing cracks across which the tension
steel yielded in the previous load cycle,
and that the more uniformly distributed and
embedded vertical bars across a potential
sliding plane provide better dowel shear
resistance.

Also, more evenly distributed vertical
bars across the wall section provide better
crack control. In beams several small
cracks across the flexural reinforcement
may merge into one or two large cracks
across the web, thereby forming a potential
plane of sliding. Because of the better
crack control and the shear stress limitation
imposed by Eg. (B-36), it does not appear
to be necessary to provide diagonal steel
across the potential sliding planes of the (
plastic hinge zone, as it has been suggested
for beams. However, it is recommended that
in low rise shear walls some of the shear
should be resisted by diagonal bars, placed
in the middle of the wall thickness,

particularly when the minimum axial compression

stress on such walls is less than 0.1 f!
and the shear stress exceeds 0.4 VI'. ¢
Suggested arrangements are shown in figure
26. Such bars should be included in the
evaluation of the flexural resistance and
may be included in the resistance to
diagonal tension.

Construction joints represent potential
weaknesses where sliding shear displacement
can occur. Therefore it is recommended that
the design for shear transfer across
construction joints_be based on the shear
friction mechanism . Accordingly where
shear is resisted at a construction joint
by friction between carefully roughened
surfaces and by dowel action of the vertical
reinforcement, the ratio of reinforcement
that crosses at right angles to the con-
struction joint should not be less than

\Y Nu 1
Poe = ("wall - Kg) f; > 0.0025 (B-37)

where N is the minimum design compression

force on the wall. For tension, N_ should
be taken as negative. \Y is obPained
from Eq. (B-20) or Eqg. (Bwé%}.

Detailing of Coupling Beams

The ductility demand on coupling beams
of coupled shear walls, such as examined
in "Coupled Shear Walls'", can be large.
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(See figure 7b). To preserve the energy
dissipating properties of such beams,
which are often relatively deep, diagonal
reinforcement should be utilized(2) to
resist simultaneously both the moments
and the shear. Diagonal bars in cages
- should be confined to ensure that buckling
of diagonal bars cannot occur. For this
purpose Eg. (B-30) and the rules listed
in ‘Confinement of longitudinal bars'
should be followed. However neither

the spacing of ties nor the pitch of
rectangular spirals should exceed 100 mm.

When coupling beams are as slender
as normal beams, which are used in ductile
frames, distinct plastic hinges will form
at the ends and these can be detailed as
for beams. The danger of sliding shear
failure and the inhibition of flexural
ductility increases with increased depth
to span ratio, h/%_, and with increased
shear stresses.
that in coupling beams of shear walls
the entire seismic design shear and flexure
should be resisted by diagonal reinforce-
ment in both directions unless the earth-
quake induced shear stress is less than

- L i
vi T 0-1.n i (B-38)

It should be noted that this severe
limitation is recommended because
coupling beams can be subjected to much
larger rotational ductility demands than
spandrel beams of similar dimensions in
frames. There is no limitation on the
inclination of the diagonal bars.

Slab Coupling of Walls

When walls are interconnected by
slabs only, as shown in figure 17c, the
stiffness and strength of the coupling
between the two walls becomes difficult
to define. In the elastic range of
displacement a considerable width of the
slab will participate in load transfer.
However, when inelastic deformations occur
in the doorway, as illustrated in figure
27, a dramatic loss of stiffness can be
expected(lS). Even when the flexural
reinforcement is placed in a narrow band,
with a width approximately equal to that
of the doorway, and the band is confined
by stirrup-ties enclosing the top and
bottom slab bars in the band, it is diff-
icult to control punching shear around
the toes of the walls. From preliminary
studies(15) it appears that the hysteretic
response of slab coupling is poor and that
this system does not provide good energy
dissipation with reversed inelastic
cyclic loading. As figure 18 indicates,
the contribution of slab coupling to the
total moment of resistance is not likely
to be significant. For this reason its
contribution to seismic strength should
be neglected in most cases.

When shallow beams, projecting below
the slab, are provided across doorways,
it must be expected that they will fail
in shear, unless the very significant
contribution of the slab reinforcement,
placed parallel to the coupled walls, is

herefore it is recommended
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included in the evaluation of the flexural
overcapacity of the relevant beam hinge,
and thus in the evaluation of the imposed
shear.

NOTATION:

A = moment parameter used for coupled
shear walls

Ab = area of one bar, mm2

Ac* = area of concrete core in the outer
half of section which is subjected
to compression strains, measured t
outside of peripheral hoop legs,mm

Ae = effective area of the cross section
of a wall subjected to axial load

Ag = gross area of section, mm2

A * = gross area of the outer half of wall

g . . . . .

section WhlSh is subject to compression
strains, mm

Ash = total effective area of hoop bars
and supplementary cross ties in
directions under conséderation
within spacing Sy s MW

Ate = area ofzone leg of stirrup or stirrup
tie, mm

Av = area of shear reinforcement within
a distance s, mm

Aw = effective web area of wall cross
section, mm

b = width of compression face of member
or thickness of rectangular wall
section

bw = web width or wall thickness

c = computed distance of neutral axis
from comrpressive edge of the wall
section

Ce = critical value of c

d = distance from extreme compression

fibre to centroid of tension steel

ex,ey= eccentricity of centre of mass
in x and y directions respectively

Ec = modulus of elasticity of concrete,
MPa

£ = form factor considered with shear
deformation

fé = specified compressive strength of
concrete, MPa

fr = modulus of rupture of concrete, MPa

£ = specified yield strencth of steel

Y reinforcement, MPa

£ h = specified yield strength of hoop

¥ or supplementary cross tie steel, MPa

Gc = modulus of rigidity of concrete, MPa

h = overall thickness of member or depth

of beam, mm
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h"

M

Mcode

M., M

17772

M‘i ,

MO

= overall height of wall of horizontal
length Qw’ mm

= dimension of concrete core of
section measured perpendicular to
the direction of the hoop bars, mm

= importance factor

= moment of inertia of cracked section
transformed to concrete

= effective moment of inertia for
computation of flexural and shear
deflections

= moment of inertia of gross concrete
section about centroidal axis

= equivalent moment of inertia of
wall section neglecting the
reinforcement for computing total
deflections

= distance between axes of shear walls

= length of clear span or distance,
measured face to face of support

= horizontal length of wall

= maximum moment in member at stage
for which deflection is being
computed

= cracking moment

= moment induced by code specified
static loading

= ideal flexural strength of wall
section

= overturning moment at the base of
a shear wall structure due to code
load

= moment developed at flexural
overcapacity of member

= moments due to code loading developed
at the base of the wall concurrently
with earthquake induced axial tension
or compression respectively

=flexural overcapacity developed in
the tension and compression wall
respectively

= design moments at the base after

roment redistribution in the
tension and compression walls
respectively

= number of floors above the section
of wall being considered :

= number of storeys in a shear wall
structure

= design axial compression load normal
to crosssection occurring simult-
aneously with the design shear
force, N

= axial load on member due to deal
load only

[l

]

maximum design axial load due to
gravity and seismic loading acting
on the member during an earthquake, N

axial load on member due to design
earthquake loading only

axial load on member due to
reduced live load

maximum axial load on member due
to earthquake only at the
development of flexural over-
capacity

=design axial tension and compression
force acting on wall at the develop-
ment of the flexural overstrength
capacity of the structure

shear overcapacity of a coupling
beam

spacing of stirrups, mm

vertical spacing of horizontal
reinforcement, mm

horizontal spacing of vertical
reinforcement along length of wall,
mm

structural type factor

tension force or period of
vibration, seconds

nominal permissible shear stress
carried by concrete, MPa
ideal shear stress, MPa

nominal shear stress allocated to
resistance of web reinforcement, MPa

= shear demand derived from code loading

ideal shear capacity of wall

= design shear force for a wall at

1]

1]

It

the development of the flexural over-
capacity of the structure

shear force developed at flexural
overcapacity

distance from centroidal axis of
gross section, neglecting the
reinforcement, to the extreme fibre
in tension

modifier of structural type factor

wall deflection due to anchorage
deformations only

wall deflection due to flexural
deformations only

deflection at top of shear wall at
ultimate state

wall deflection due to shear
deformations only

deflection at top of shear wall at
first yield
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APPENDIX I

THE ESTIMATION OF DEFLECTIONS OF CRACKED
REINFORCED CONCRETE CANTILEVER WALLS

Assumptions

Deflection estimates generally used in
seismic design should reflect the
behaviour of the structure after the
development of extensive cracking at a
load level which, as yet, does not result
in inelastic deformations. Therefore
for the purpose of the derivations that
follow, wall behaviour at 75% of the
theoretical yield load will be considered.
The yield load is that which causes the
main part of the flexural reinforcement,
placed in boundary regions of walls,

such as flanges, to yield. If for
example the main flexural reinforcement in
a wall section consists of seven layers
of D28 bars, the yield load is that
attained at the onset of yielding in the
innermost (i.e. seventh layer of these
D28 bars). This load will be close to
the ideal flexural capacity.

In order to define the stiffness of
any elastic member with given boundary
conditions, a certain unit deformation
must be related to a certain load pattern.
For the purpose of this study the structure
and the load on it are those shown in
figure 28a and figure 28b, and the
deformation to be determined is the lateral
deflection at roof level, A, as shown in
figure 28c.

The symbols used in the subsequent
derivation are fully defined in the text
or the list of symbols.

Flexural Deformations

The flexural deformations, being
dominant, are normally the only ones that
are considered in the design of flexural
members. Accordingly the roof deflection
for a homogeneous elastic cantilever wall
of figure 28a is

Ph
w
A = g (I-1)

The most appropriate approach to the
estimation of cracking is to allow for
a loss of effective resisting area in the
cross section. The effective moment of
inertia of the section, I , will be
between that based on the®uncracked section,
I , and that obtained from the fully
cFacked section in which the steel area
is transformed to concrete area, I __.
An interpolation for I_ between thé& above
limits has been develoged by Branson and
it has been adopted_by the American
Concrete Institute Its background
is examined elsewhere(2: 8) This is

Mer Ig + L— - Mer Ter  (B-12)
M

The moment assumed to cause cracking
is from first principles

f I
M =-X9 (B-15)

It is seen that the relationship
between the second moment of area and the
moments are such that I > I_ 2 I _ where

e cr
1l > (Mcr/Ma) > 0).

For beams and columns of normal
proportions and reinforcement contents it
is found that usua-ly 0.4 < I, /I _ < 0.6,
and hence the equivalent momefit of inertia
is such that 0.5 < I /I < 0.7. Consequently
in the elastic analysis of frames customarily
the "gross moment of inertia", I_ of members
is used, and this is reduced by 90 to 50%
to allow for the effects of cracking.

In structural walls usually consider-
ably less flexural reinforcement is being used
than in beams of ductile earthquake resisting
frames. The flexural tension steel content,
o = A_/bd, to be considered in the evaluation
of fl3nged transformed wall sections can be
as small as 0.05%. Consequently in such
walls the "transformed moment of inertia",

I will be a smaller fraction of the
"gross moment of inertia", I . Cracking
has thus a more profound effdct on the
stiffness of normal walls than on that

of beams.

The flexural deformation, shown in
figure 284 can therefore be obtained thus

ph 3
w

b = 3E T (1-2)
Cc e

Anchorage Deformations

The analytical model commonly used
is a cantilever. This is fully fixed
against rotations at its base. (figure
28a) . Under lateral load the vertical
wall reinforcement is at its highest
stress at the base. Consequently tensile
strains along the flexural bars will only
gradually decay in the foundation structure.
The elongation of the vertical bars within the
foundation structure and the slip due to
high local bond stresses along the develop-
ment length will result in an apparent "pull
out" of such bars at the base of the wall.
This can significantly increase the wall
deflection, as shown in figure 28e. Based
on the relative magnitudes of observed "pull
out" deformations, it is suggested that its
magnitude be estimated as

Af = 0.2 Am (1-3)

Shear Deformations

It is well known that shear deformations
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Fig. 35 - Sectional Properties of an Example Shear Wall
Section.
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F‘ig. 36 - Arrangement of Transverse Reinforcment in the Critical
Regions of the Example Shear Wall Section.
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in slender flexural members are negligibly
small in comparison with those due to
flexure. Walls, however, may belong to
the family of "deep beams", in which shear
deformations are likely to be significant.
Therefore shear deformations should be
considered.

The shear deflection of a homogeneous
elastic wall at roof level, shown in figure
28f, is known to be

fPhw
A = A (I-4)
CcC w

The area of the wall, effective in
shear, Aw’ is defined in figure 29. It
will be assumed that A = b & for the

common type of walls u¥ed. ¥ W

It has been found that in members
in which diagonal cracks have developed
as a result of shear stresses, the
relative contribution of shear deformations
is considerably larger than what Eq. (I-4)
would predict. It will be appreciated
that after the development of diagonal
cracking a new form of shear transfer
begins to operate i.e. the truss mechanism.
In this new mechanism the web reinforcement
(stirrups) contributes to la{g? shear
strains. It has been shown that the
shear stiffness of diagonally cracked beams
is only 10-30% of that of uncracked beams,
depending on the contribution of web
reinforcement.

The estimation of shear deformation
in a shear wall is complicated by the fact
that the shear force in a real wall will
decrease from a minimum at the top of the
wall to a maximum of the base. Moreover,
in the lower portions of the wall more
extensive flexural and shear cracking will
occur, and it can be expected that in
these more heavily cracked zones the shear
deformations will be larger. Taking
these considerations into account it is
suggested that the contributions of shear
deformations along the height of a cantilever
wall be estimated from the following simple
expression:

1.2 Ph 10Ph
W w

A, = 84 E0.35 " ERA (1-5)
C w C W

Combined Deformations

‘It is seen from figure 28 that the
roof deflection of the cracked cantilever
wall due to flexural, anchorage pull-out
and shear deformations is A =A +Af + AL
Substituting from Egs. (I-2), m v
(I-3) and (I-5) we obtain

3 0.2ph > 10Ph
w w w

A=3gT1 tIET tEa (I-6)
Cc e Cc e C W

It is convenient to express the
deflection in terms of flexural deformations
and an equivalent wall moment of inertia,

I , so that
v 3
Ph
A= =2 (I-7)

3E T
cw

By equating the above two equations
the equivalent wall moment of inertia, I_,
: . w
is obtained thus

(B-12)

where value of Ie is given by Eq. (B-14)
and

F = R (B-13)
h™b 2
W W W

A Comparison with Experiments

Recently the Portland Cement Assoc-
iation in Skokie (US) carried out extensive
testing with centilever shear walls
Some observed results of this programme
are compared with values obtained from
Eq. (B-12) and Eqg. (B-14). All the walls
reported have the same aspect ratio of
h /. = 2.4. This is in the range where

w . s es
sgear deformations are likely to be significant.

The basic dimensions of the cross
sections used for the 4752 mm high wall
specimens are shown in figure 30. A
comparison of predicted deflections with
observed ones was made for all seven
specimens reported. However, representative
results for only three of the cases are
presented here.

Figure 31 shows the initial cycles
of the load displacement relationship for
the flanged wall specimen (figure 30), when
the load did not exceed approximately 60%
of the yield load P The straight line
shows the idealizedyrelationship that would
have resulted from Egq. (B-12).

A similar relationship is shown in
figure 32 for a wall with a rectangular cross
section. In the response shown the maximum
load reached approximately 83% of the yield
load, Py.

Finally a comparison is made for a wall
with a rectangular boundary element (barbell),
B-5, in figure 33. Here Egs. (B-12) and
(B-14) are compared. It is seen that Eq.
(B-14) generally recommended(8) for the
prediction of beam deflection, overestimates
the wall stiffness. The differences in
deflections, as predicted by the two
equations, result from the considerations
of shear and anchorage deformations, which
have been incorporated into Egq. (B-12).

The full response, including the inelastic
cycles, of this wall specimen, is shown in
figure 34.

With respect to the PCA experiments
used here, it may be said that the suggested

deflection estimate procedure should be
acceptable for design purposes.

APPENDIX TII

DESIGN OF A CANTILEVER SHEAR WALL

Design Requirements and Properties

Preliminary desion has indicated that
one of several symmetrically arranged canti-



lever shear walls of a 11 storey Class III
building, resisting the required seismic
loading, may be dimensioned and reinforced
at ground floor level as shown in figure 35.
In this study seismic actions in the
longitudinal direction of the wall sections
are considered only. The first storey

is 3.50 m high and the upper 10 storeys

are 3.25 m each.

The strength properties to be used
are as follows:

Concrete fé = 25MPa
Vertical wall reinforce-

ment fy = 380MPa
Horizontal wall shear

reinforcement fy = 380MPa
Horizontal hoops and

ties fy = 275MPa

The total loading at ground floor
level from all the tributary areas of the
upper floors is as follows:

Dead load
Reduced live load

7000 kN
3000 kN

The centre of the lateral static
load, used in the preliminary design, was
located at 23 m above ground floor. At
ground level the wall is assumed to be
fully fixed against rotations.

Minimum requirements with respect to

i) Section “Stability" i.e.
Qn/b < 3500/400 = 8.75 <10

ii) Section" Longitudinal Wall Reinforce-
ment™ i.e.

Py, min = 0.7/380<2 x 201/(400 x 350)
= 0.004

and

iii) Bars spacing requirements are all
satisfied

Flexural Capacities

The flexural capacities are to be
evaluated for each direction of loading.
The maximum axial compression to be
considered for the evaluation of the avail-
able ideal flexural strength is from(1)

Uideal = (D + LR)/¢ = (7000 + 3000)/0.9 =
11,100 kN

Loading causing compression in the flange

P. = 11,100 kN M., =72
i i
Using a trial and error process,
the neutral axis depth will be estimated
so that the internal compression forces less
the tensile forces will give a compression
resultant of approximately 11 MN. Then
the moment about the reference axis (the
centroid of the gross concrete section)
will be computed.

Assume first ¢ = 0.05 x 6000 = 300 mm
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The D16 bars provide (2 x 201) 380/
(0.35 x 10%) = 0.44 MN force per meter
wall length.

Ignore contribution of reinforcement
in the flange and the reduction of steel
flexural contribution in the elastic core
of the section then:

Compression Cc = (0.85 x 300)3000%

Tension T,q= 14 x 615 x 380/10° = 3.27
T,.,= (6.0 - 0.4 - 1.02)
16 0.44 = 2.01
Total tension T = 5.28=25, 3MN
Therefore Cc - T = Pi =11.0MN
Mi = 16.3(2.15 - 0.5 x 0.85 x 0.3) =33.0MNm
3.27(6.00- 2.15-0.5x1.02) =10.9MNm
2.01(0.5x4.58+0.4~2.15) = 1.1MNm

No new trial for ¢ is required. Therefore

M. =45.0MNm
i

Loading causing tension in the flange

P, = 11.1 MN M, = ?
1 1

0.35 x 6000 = 2100 mm

Assume first ¢

Compression Cc = (0.85x2100)400(0.85x%x25)
/106 =15.2MN

C,g=14x615x380,/106 = 3.3MN
Cl6=neglect = -
Total compression C =18.5MN
Tension T,4= (6x615) 380/10° = 1.4MN
in the flandey _(3.0-2x0.27)0.44 = 1.1y
in the web T,.=(6.0-0.4-2.1)0.44 = 1.5MN’
Total tension T =_ZT8MN

Net compression Pi = 11.1< 14.5MN

Reduce a by A a = (14.5-11.1)
106/ (0.85x25x400) = say 370 mm
Hence c = 2100 - 370/0.85 = 1664 mm
by proportion
Cc = 1664x15.2/2100 =12.0MN
C28 = as before = 3.3MN
C16 = as before = =
15. 3MN
T28 = as before = 1.4MN
in the flange
T16 = as before = 1.1MN
in the web Tig = (6.0-0.4-1.66)0.44 = 1.7MN
4.2MN

p; = 11.1 =T1.IMN
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M, = 12.0(6.0-2.15-0.85x1.66x0.5) = 37.7MNm
3.3(6.0-2.15-0.5x1.02) = 11.0MNm
(1.4+1.1) (2.15-0.5x0.4) = 4.9MNm

1.7 -(6.0-0.4-1.66)0.5+2.15-0.4}
= 0.4MNm

Hence moment of resistance

is M; 53.2MNm

Design for Shear

As the ideal moment capacity for the
most adverse load combination is 53.2MN,
the code required shear is close to
0.9x53.2/23 = 2.08MN.

For a 11 storey building the dynamic
shear magnification from Table B-I is
w_ = 1.7. With a flexural overstrength
of 125% of ideal strength, the design
shear force for the wall is obtained from

Eq. (B-18).

Vyall = 1.7 x 1.25 x 2.08 = 4.42 MN

Hence from Eg. (B-32)

vy =~ 4.42 x 106/(400 x 0.8 x 6000) = 2.30MPa
From Eq. (B-36) the maximum allowable shear

stress 1is

Vi max - (0.3 x 1.39 x 1.0 + 0.16)
! V25 = 2.89 > 2.30 MPa
Nu/A = 11.1 x 106/{6000x400+(3000—400)400}
9 = 3.23MPa
From Eq. (B-34)
Ve = 0.25(1 + 25/25) v3.23-25/10 = 0.43MPa
From Eqg. (B-33)
v = v,-v_= 2.30 - 0.43 = 1.87MPa
S i ¢
From Eg. (B-35)
Av = 1.87x400xs/380 = 1.97s
Assume two legs of HD1l6 bars, AV = 402rnm2
s = 402/1.97 = 204 = 200 mm

Use HD16 at 200 mm crs for horizontal
shear (stirrup) reinforcement

Confinement

It is evident that no confinement
is required when the flange is in compression
as the section is extremely ductile with
c/% = 0.05. However, when the flange is
in Yension the stem of the section will need
to be confined. For this it was found in
"Ioading causing tension in the flanges"
¢ 27664 e 9es’y that
From Eq. (B-26) with ¢O = 1.4

Ce = 0.10x1.4x1.0x6000 =

840 < 1664

Hence provide confinement over a length of
0.5 x 1664 = 832 mm

For Egs. (B-28) and (B-29) to be used take
the following values

h' = 832-4140.5x12 = 797 = 800,
A* = 400x832 = 333000 mm®, Assume R12 ties,

Assume cover to HD stirrups = 25 mm and to

main bars 41 mm, hence

A; = (400-2x41+2x12) (832-41+12) = 275000 mm2
(A;/Aé - 1) = (333/275-1) = 0.21
0.3x0.21 = 0.063 < 0.12 hence Eq.

(B-29) governs

From Eq. (B-29)

A= 0.125h 800 x (25/275) (0.5 + 0.9 x
1664/6000) = 6.545h

With 6 R12 legs over 800 mm lencath

Sy = 6x113/6.54 = 104 mm

From the spacing requirements stated in
"Confining reinforcement"
133 or 150 mm

= 6 x 28 = 168 or 400/3 =

sh,max
Hence use R12 hoops and ties at 100 mm cr’
and for practical reason confine all 14
HD28 bars.

For the confinement in the longitudinal
direction h" = 400 - 2 x 41 + 12 = 330 mm

As the distance between the 2 HD28 bars is
more than 200 mm, it will be necessary to
place in the confined region an intermediate
(nominal) bar in between them. A D20

bar will enable another tie to be placed

over the 400 mm width of the section.

Hence by proportion from the above derivation
of Ash and Sp = 100 )

(330/800)5.90 x 100 = 2

A = 243 mm

sh
R10 legs could be used, but for the sake of
uniformity R12 ties will be provided as shown
in figure 36.

To confine the HD28 bars against buckling
at the ends of the flange, ties are required
in accordance with 'Confinement of longitudinal

bars' and Eq. (B-30)

From Eq. (B-31)

Py = 3 x 615/400 x 150 = 0.0308 > 0.0075
Hence

A, =222 38 ;%6 = 0.53s,

The max' spacing is 6 x 28 = 168 mm

R10 ties may be used, thus

= 78.5/0.53 = 148 mm

Sh
Use R10 ties at 150 mm cr>
figure 36

as shown in

The confining reinforcement as
computed should extend, in accordance with
figure 15, to a height of & _ = 6000 mm,
i.e. up to the 2nd floor of this structure.



Note that a more rigorous analysis,
using Eg. (B-27) would have given the
critical value for the neutral axis depth
as follows:

With s = 1.0, &, = 6000 and hW =
3.5 + 10 x 3.25 = 36 m

_ 8.6x1.4x1x6000
c ~(4-0.7x1) (17+36/6)

Hence confinement is to be provided as
computed above.

= 952mm>840< 1664

C
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