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A CONSIDERATION OF THE TORSIONAL 

RESPONSE OF BUILDING FRAMES 

A.Rutenberg* 

ABSTRACT 

History of elastic static procedures for the seismic analysis of 
torsionally unbalanced building structures is briefly reviewed. It is 
suggested that the provisions of NZS 4203:19 76, accounting for modal 
coupling, are based on inconsistent interpretation of results from w e l l 
known two-degrees-of-freedom m o d e l s . An alternative dynamic procedure 
is described w h i c h , while retaining the basic two-dimensional features 
of NZS 4203:1976 torsional provisions, is equivalent to three-dimensional 
m o d a l spectral analysis. The procedure also results in a substantial 
simplification of the analysis compared with standard dynamic computer 
techniques now available to the structural engineer. 

1. INTRODUCTION 

The seismic torsional provisions of the 
New Zealand loading c o d e d ) are intended to 
cover two m a j o r sources of rotational effects: 
(1) torsional ground m o t i o n , (2) coupling 
of lateral and torsional modes of response 
resulting from either designed or accidental 
asymmetry in the structure or its mass 
distribution. It is recognized, although 
only approximately accounted for, that the 
two lateral components of the ground motion 
as w e l l as the torsional one may combine to 
amplify the structural response. 

Housner and Outinen's pioneering paper 
on dynamic a m p l i f i c a t i o n ' 2 ) clearly indicated 
that the static method of analysis in which 
the inertia forces are applied statically at 
the m a s s centre may significantly under
estimate the maximum forces in some of the 
planar assemblages comprising the structural 
system of a typical building. They also 
found that the amplification depends on the 
lateral to torsional frequency ratio. It 
thus appeared that the static methods w e r e 
doomed as far as earthquake analysis of 
asymmetric structures w a s concerned. They 
w e r e saved, however, two years later w h e n 
Bustamante and R o s e n b l u e t h ( 3 ) introduced 
the concepts of dynamic eccentricity and 
dynamic amplification of static eccentricity. 
The dynamic eccentricity was defined as the 
ratio of the expected maximum torque and 
the expected maximum shear in a single storey 
2-DoF (degrees-of-freedom) system. The 
m a x i m a w e r e taken as the RSS (square root 
of the sum of squares) of the m o d a l spectral 
values. T h e dynamic amplification of 
eccentricity w a s defined as the ratio of 
this eccentricity and the static o n e , namely 
the distance between the mass centre CM and 
the centre of rigidity CR (Fig. 1 ) . Their 
work as w e l l as later studies by Skinner et 
al-(4) r p e n z i e n and C h o p r a ( 5 ) , Elorduy and 
R o s e n b l u e t h 7 ) and P e n z i e n s h o w e d that 
considerable amplification of torque w a s to 
be expected for closely spaced lateral and 
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torsional frequencies and low damping 
ratios, and that it w a s always conservative 
to ignore torsion w h e n computing the total 
base shear. These conclusions have been 
found to hold for several smooth response 
s p e c t r a ^ ' 1 0 ) , and also for the more general 
three-dimensional c a s e ( 9 ) . 

Although writers of building codes were 
quick to adopt the dynamic amplification 
concept by stipulating factored static 
eccentricities for the static earthquake 
analysis of torsionally unbalanced b u i l d i n g s , 
it soon became apparent that certain problems 
could not be so easily overcome. M o n o -
symmetric buildings (2-DoF) vibrate in two 
coupled modes but only one dynamic eccentricity 
was prescribed. It followed that unless 
substantial underestimates were to be 
tolerated on assemblages located on the side 
of CR away from CM (Fig. 1 ) , i.e. the 
"stiffer" side, two eccentricities w o u l d 
have to be specified. The problem was 
further complicated by the need to allow, 
again in a simplified manner, for the effects 
of accidental eccentricity due to earthquake 
input in two perpendicular lateral d i r e c t i o n s , 
as w e l l as for the torsional input and for 
inaccuracies involved in estimating the 
relative stiffness of assemblages. Two 
formulae for the dynamic eccentricity e ^ 
w e r e thus prescribed, one for on either 
side of the rigidity centre and each consist
ing of two p a r t s : the first, apparently, 
allowed for the effect of modal coupling 
and the second for all the i m p o n d e r a b l e s , 1 1 ) . 

Indeed, it is now becoming apparent 
that the effect of torsional coupling on 
the various structural assemblages cannot 
be described solely by the two constants 
provided by the c o d e s , or by the m o r e accurate 
eccentricity amplification curves given in 
the l i t e r a t u r e ( 6 , 7 , 9 , 1 0 ) f because the 
displacement of a given assemblage depends 
on the combination of the two modes of 
vibration at its particular location. 
These constants, of course, are completely 
defined by the static eccentricity and the 
frequency ratio, b u t the relation is not 
linear I 1 * , 1 3 ) m 

Last but not least is the fact that 
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static formulae, like many other code 
provisions, tend to have a life of their 
own. Since the seismic loadings evaluated 
by means of the response spectrum technique 
(3-dimensional dynamic analysis) usually 
result in providing RSS estimates of inter-
storey shear force and torque envelopes 
(e.g. (3, 8, 9 , 1 4 ) ) f it was only to be 
expected that the response of a particular 
frame or assemblage would be conventionally 
computed, as in static a n a l y s i s , by considering 
the m o r e unfavourable effect of the RSS 
shear and the RSS torque c o m b i n a t i o n ( 1 5 ' , 
i.e. as two separate loading cases. This 
p r o c e d u r e , which is inherently incorrect, 
is much cheaper in terms of computer outlay 
than the correct one w h i c h requires the RSS 
evaluation of all the relevant member actions 
in every frame. However, it has been found 
to b e quite c o n s e r v a t i v e ( 1 2 ) . This erroneous 
interpretation of results is by no means 
general as readers familiar with standard 
three-dimensional computer p r o g r a m s , such 
as TABS , w e n know. 

In view of the difficulties encountered 
with the static methods of analysis for 
torsional coupling, it is doubtful whether 
their application should be encouraged, in 
particular, w h e n sufficiently straight 
forward alternatives are available. The 
purpose of this paper is to demonstrate the 
limitations of the static approach with 
respect to m o d a l coupling and to show that 
at least for a class of torsionally 
unbalanced buildings, i.e. regular structures 
with a small or large degree of eccentricity, 
the NZS 4203: 1976 I 1 ' two-dimensional semi-
dynamic procedure can be suitably modified 
to conform better with analytical results. 

As in earlier studies on seismic torsional 
response, only linear elastic systems are 
considered. In current engineering practice 
the actions on the assemblages resulting from 
linear dynamic analysis are used as a 
basis for the capacity design of the structure. 
Since it is accepted that design for strength 
should b e related to the probable elastic 
load d i s t r i b u t i o n as affected by t o r s i o n ( 1 7 ) , 
it follows that reasonably consistent set of 
assemblage actions should be aimed at. 

F i r s t the response of a single storey 
asymmetric building to random base excitation 
(1^) is used to show h o w the expected responses 
of assemblages located at various distances 
from the centre of rigidity compare w i t h 
those computed by static approaches. A 
simple two-dimensional dynamic analysis 
procedure(9,18) w h i c h incorporates the basic 
features of NZS 4203 torsional provisions is 
then adapted to evaluate the earthquake 
response of planar assemblages of regular 
asymmetric multistorey' building structures. 

2. TWO DEGREES OF FREEDOM SYSTEMS 

The system studied is an idealized single 
storey structure (Fig. 1) consisting of a 
floor w i t h a total mass m, rigid in its own 
plane and supported laterally by several 
m a s s l e s s p l a n a r assemblages (e.g. shear 
walls or f r a m e s ) . F or simplicity of p r e s e n t 
ation one axis of symmetry is assumed, so 
that only 2-DoF are considered: lateral 
displacement in the y direction of the mass 
centre CM relative to the ground, and a 
rotation 6 about a vertical axis through CM, 
but the technique is equally applicable to 

the m o r e general case of no symmetry. The 
offset of CM from the centre of rigidity CR 
is the static eccentricity e t a t the floor. 
The earthquake acceleration U q is assumed 
to act in the y direction only, and the 
rotational component of excitation is 
ignored. The equations of m o t i o n and the 
analysis procedure for this system 9 f 1 8 ) 
are given in Appendix A. 

The effects of lateral-torsional coupling 
on the response of the system are w e l l k n o w n , 
and graphical presentations showing the 
amplification of static eccentricity and 
the associated reduction in the lateral 
force response for flat and hyperbolic 
response spectra are readily available^ f ' '. 
Similar graphs were prepared also for white 
noise base excitation(1$) and are shown in 
Fig. 2. A comparison of the graphs drawn 
for the above three spectra indicated no 
striking differences unless the torsional 
rigidity is very low. 

With such graphs it is possible to 
evaluate the RSS shear force and the RSS 
torque acting on the building as a w h o l e , 
namely: 

RSS ( V ) = V Q . S R - K Y / y x
2 -4- y 2

2 ! (1) 

RSS (T) = V .e.TR = K n /e_ 2 4- 6 2* (2) 
O DO / 1 Z 

in which V = the shear acting on a 
symmetrical structure with identical mass m 
and lateral stiffness Ky, SR and TR are 
respectively the shear and torque ratios 
as given in Fig. 2, K Q q = the torsional 
rigidity defined at the centre of rigidity, 
y k and 0^ (k = 1,2) are respectively the 
modal lateral and torsional displacements 
under the assumed earthquake excitation. 
In the absence of eccentricity the shear 
force acting on each frame is proportional 
to its stiffness. In eccentric structures, 
however, some problems arise. The static 
methods compute the forces acting on any 
given frame for two separate loading c a s e s , 
namely the RSS shear and the RSS torque 
and then combine them in the usual strength 
of materials fashion. Note that in this 
method only the combination that produces 
the maximum stress is used. H o w e v e r , for 
an asymmetric structure the shear force 
and torque cannot be treated as two separate 
loading c a s e s , since each one comprises the 
effects of the two vibration modes of the 
system. Fig. 3 compares the two p r o c e d u r e s , 
and it is seen that in order to obtain the 
expected maximum response of a frame located 
at a distance a from the mass c e n t r e , the 
combined, i.e. RSS, effect of the two m o d e s 
at this particular location should b e 
considered. 

A t this point it is useful to recall 
the particular case shown in Fig. 4 studied 
by Elorduy and Rosenblueth in their w e l l 
known 1968 p a p e r ( 6 ) , w h e r e the original 
dynamic eccentricity curves w e r e presented. 
The special feature of this m o d e l , not to 
b e found in a typical building s t r u c t u r e , 
is the complete separation between the 
lateral load (or shear) resisting frame 
and the frames resisting torsion. For this 
model the static procedure is also correct 
since the shear force acts only on the frame 
in the y direction and the torque acts only 



13 

on the two frames in the x direction, so 
that the RSS shear and the RSS torque do 
represent the expected m a x i m a for each 
frame. In a typical structure a frame 
w h i c h is not perpendicular to the direction 
of excitation is affected by both components, 
and therefore, the different phases between 
rotation and translation w i t h i n each mode 
are lost in the static procedure (Fig. 3 ) . 

The maximum lateral displacements 
computed by the static methods are compared 
with their "exact" dynamic counterparts in 
Fig. 5. The results refer to a single 
storey structure with a torsional to lateral 
frequency ratio Q = 1.0 (or £3Q = 0.98} 
leading to a near maximum amplification of 
eccentricity (Fig. 2 ) , and an eccentricity 
ratio e* = e/p = 0 . 2 (p = mass radius of 
g y r a t i o n ) . This eccentricity ratio is 
approximately 0.06 and 0.08 of the plan 
•dimension b perpendicular to the direction 
of excitation (Fig. 1) for long and square 
buildings respectively. 

In Fig. 5 the maximum lateral displace
ment ratio (relative to the symmetrical case, 
i.e. Y/YQ) is plotted against the non-
dimensional frame location along the x-axis. 
A band rather than a curve is depicted for 
the results of the dynamic analysis to show 
the limited effect in this case of the choice 
of a particular spectrum on the maximum 
displacement. The three type of spectra 
banded are shown in the inset of Fig. 5. 
A somewhat w i d e r band w i l l be obtained with 
increasing eccentricity ratio. These 
observations are not valid for spiked spectra 
as is evident from Reference 1 3 , in which 
some results based on the El Centro spectrum 
are presented. N o t e that the displacement 
of the rigidity centre is m u c h smaller than 
for the symmetric case (77 p e r c e n t ) , as can 
also be seen from Fig. 2, and so is the total 
design shear capacity if m o s t of the shear 
resisting assemblages are located near CR. 
However, w h e n the stiffness is distributed 
more evenly, the total shear capacity will be 
affected to a lesser extent. 

The effect of varying the torsional to 
lateral frequency ratio fiQ m a y be seen from 
the "upper bound" curve shown in Fig. 6 for 
the w h i t e noise acceleration spectrum 
(S ~T""^) . On the side of CR away from CM 
thxs curve represents a frequency ratio of 
about 0.7, this being equivalent to 
K Q q = 0 . 5 p ^ K y O . Lower frequency ratios lead 
to m u c h larger displacements w i t h increasing 
distance from CR, b u t practical designs are 
unlikely to have these features. For higher 
frequency r a t i o s , the response remains below 
the "upper bound" curve. 

For the static analysis the New Zealand 
loading code W specifies two design 
ec cent r i c i t i e s, namely: 

e d l = 1.7e - e 2 / b + 0.lb (3) 

e d 2 = e " ° " l b (4) 
w h i c h e v e r is the less favourable for the 
frame under consideration. These formulae 
are similar to those given by other earth
quake codes w i t h the exception of the 
second term on the right hand side of Eq. 
( 3 ) , w h i c h is designed to account for the 
r e d u c t i o n in torsional amplification with 
increasing eccentricity (Fig. 2 ) . It appears 

that the two equations with the 0.lb terms 
removed were intended to provide bounding 
curves for the torsional-lateral couplings 
e f f e c t ( 7 , 1 1 ) . The displacements computed 
on the basis of these formulae result in 
the two sets of full straight lines in 
Fig. 5 and Fig. 6, originating from 
e* = 0.2 at y / y Q = 1, each for long (b = 3.4p) 
and square (b = 2.45p) buildings respectively. 
The effect of adding the 0.lb term is shown 
in two more sets of lines above the former. 
The broken lines denoted "static" result 
w h e n the theoretical magnification factors 
(Fig. 2) rather than the code values are 
used. It is thus seen that the forces 
predicted by the Code (excluding the effect 
of 0.lb) may substantially overestimate 
the actions on the assemblages located on 
the "flexible" side of the structure and 
may underestimate those on the "stiffer" 
side. However, the effect of the 0,1b term 
is quite substantial in this c a s e . The so 
called static method is always conservative, 
although, as expected, it overestimates the 
actions on the "stiffer" side to a larger 
extent than those on the "flexible" side. 
It can be seen from Fig. 2b that w i t h 
increasing eccentricity the lateral forces 
computed on the basis of the Code become 
increasingly conservative. In fact it may 
be argued that the absence of gross u n d e r 
estimation of assemblage actions on the 
"stiffer" side of the structure is rather 
more the result of overestimating the 
lateral forces than the accuracy of the 
torsional formula per se. 

In summary, NZS 4203:1976 does not 
p r e d i c t consistently the probable elastic 
load distribution among the assemblages 
as induced by torsional effects, and large 
discrepancies between these results and those 
obtained from modal analysis are likely to 
occur. This is mainly due to inconsistent 
interpretation of results from 2-DoF m o d e l s . 

In view of the limitations of the 
p r e s e n t static approaches, it appears that 
a sufficiently simple modal procedure may 
become m o r e attractive, and a brief 
description thereof is given in the 
following section. 

3. RSS PROCEDURE TO EVALUATE A S S E M B L A G E FORCES 

The elastic seismic response of 
torsionally coupled single storey structures 
has b e e n w e l l documented(2-9,18,21) ^ However, 
m o s t reports are not concerned w i t h the 
evaluation of assemblage forces once the 
RSS overall responses have been computed, 
presumably because this appears to be 
straight forward. Although the pro c e d ure 
is indeed quite simple, it has b e e n shown 
that a different b u t inconsistent approach 
has been followed. To fix i d e a s , the 
computational sequence leading to the "correct' 1 

assemblage forces is now outlined. F o r 
clarity of presentation, the detailed 
algebraic derivation leading to the forces 
response of 2-DoF systems, easily available 
elsewhere(4,6,9,18) i s p r e s e n t e d in the 
A p p e n d i x A. 

(1) Compute the 2-DoF mode shapes for the 
mono-symmetric structure (for a completely 
asymmetric o n e , compute three m o d e s h a p e s ) , 
T h e procedure is described in A p p e n d i x A . 

(2) Compute the modal lateral and torsional 
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displacements for the specified spectrum 
(Fig. 3 ) : 

Y k = s d k r k *yk 

p e k = sdk r k ^ek 

k = 1 , 2 (5) 

in w h i c h ^yk' = the lateral and torsional 
mode shapes, = the spectral displacement 
associated with the natural frequency co^, and 
r k = the k-th modal participation factor. 
Expressions for ^ and r are given in 
A p p e n d i x A. 

(3) Compute the modal displacement response 
of the assemblage located at a distance a 
from the mass centre (Fig. 3 ) : 

*ak = y k + a 9 k 
T h i s , of course, is identical to: 

(6) 

*ak dk k w y k p ^ 6 k ; dk k ^ak (7) 

w h e r e ^ ^ s t n e m o d a l ordinate at a. 

(4) Evaluate the maximum response by using 
the appropriate RSS formulae (Eq. ( A l O ) or 
(All) ) depending on the separation of and 

GO 2 , name ly 

y a = R S S ( Y a k ) (8) 

The shear force on the assemblage is then 
given by: 

s = k y a y a J a 
(9) 

w h e r e k is the lateral stiffness of the 
assemblage located at a. 

The application of the proposed technique 
to a class of multistorey building structures 
is discussed in the following section. 

4. M U L T I S T O R E Y BUILDINGS 

It is w e l l known that in irregular 
structures as w e l l as in some regular ones 
(e.g. regular walls and frames) a single 
v e r t i c a l axis of rigidity cannot as a rule 
b e defined. Even in a shear building, 
w h e r e the concept of rigidity centre is 
m e a n i n g f u l separately for every storey, the 
locus of these centres w i l l not necessarily 
b e a v e r t i c a l o n e , nor will the principal 
axes of rigidity (axes of bending) for all 
storeys be identically oriented. This fact 
i m p o s e s , of course, certain limitations on 
the applicability of the two or three DoF 
m o d e l s to the dynamic analysis of multistorey 
b u i l d i n g structures. 

It has b e e n s h o w n ( 9 ' 1 4 ' 1 8 ^ that for a 
relatively w i d e class of asymmetric structures 
i t is p o s s i b l e to simplify the modal spectral 
a n a l y s i s considerably by taking advantage of 
their special geometric features. Strictly, 
the simplified procedure is applicable to 
asymmetric buildings w i t h the mass centres 
of the floors being located along one vertical 
a x i s , and having a single family of framing 
systems comprising several planar assemblages 
w i t h similar stiffness properties and a 
c o m m o n v a r i a t i o n thereof along the h e i g h t of 
the b u i l d i n g . However, it has been shown 
(9,18) -j-hat results w i t h an accuracy sufficient 
for engineering purposes can be obtained 

w h e n these conditions are only approximately 
satisfied. 

A similar procedure may also b e applied 
to structural systems having two families 
of resisting element w i t h their axes of 
rigidity not necessarily co-linear. The 
results are again approximate, although 
it has been found that the approximation 
is usually of sufficient accuracy * ' . 

Briefly, the procedure consists of 
uncoupling 2N-DoF systems (or 3N-DoF for 
the general case of no symmetry) into 
N 2-DoF (or 3-DoF) systems w h i c h are 
linearly related to two N-DoF s y s t e m s , N 
being the number of storeys. W h e n the basic 
assumptions stated in the foregoing 
paragraph are practically satisfied, only 
one N-DoF system needs to be solved. In 
other w o r d s , the response of a torsionally 
coupled regular building can be expressed 
in terms of the response of one or at m o s t 
three torsionally uncoupled s y s t e m s , i.e. 
a symmetrical structure w i t h its lateral 
stiffness properties identical to their 
counterparts in the actual structure, and 
associated torsionally unbalanced single 
storey structures of the type described 
in the previous section and in A p p e n d i x A. 
A short description of the technique is 
given in Appendix B. 

It is seen that a particular feature 
of the class of structures under consider
ation is that the evaluation of natural 
frequencies and mode shapes requires only 
a two-dimensional (plane frame) rather 
than a three-dimensional (space frame) 
analysis. The proposed technique is thus 
similar in its major features to the 
procedure recommended by NZS 4203:1976 
(Amendment N o . 2) for the two-dimensional 
dynamic analysis of regular asymmetric 
building structures. It thus retains the 
Code's computational advantages since only 
plane frame computer programs are required. 
The basic difference l i e s , h o w e v e r , in the 
treatment of eccentricity. Whereas the 
Code uses E q s . (3) and ( 4 ) , the proposed 
method applies spectral analysis to 
compute the probable distribution of 
torsional effects on the various assemblages. 

The sequence of steps in the analysis 
of response is thus similar to the one 
followed in section 3, w i t h the exception 
that two sets of plane frame natural 
frequencies a j y j and oo@j as w e l l as their 
respective mode shapes cf>yj and 4>Q j m u s t 
first be computed. 

With the lower modal displacements 
of the assemblage (six for the case of one 
axis of symmetry) computed, the modal base 
s h e a r s , modal member axial forces and 
moments can be easily evaluated by using 
standard procedures. Finally, the 
probable maximum response is obtained by 
means of the appropriate RSS formula. 
N o t e , however, that in computing the 
response (e.g. y a ) , by means of the RSS 
formula (step 4 ) , Eq. (All) becomes less 
tractable w h e n sets of m o r e than two 
closely spaced frequencies occur. 

The computing sequence of m e m b e r 
forces outlined in the foregoing paragraph 
is rather expensive in terms of computer 
outlay since all member actions have to be 
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independently computed from their modal 
components. However, engineering practice 
usually accepts the responses represented by 
RSS storey shear forces as the equivalent 
loading w h e r e from member forces are derived 
by means of a standard structural analysis. 
Strictly, such a procedure does not produce 
the probable maximum member actions in the 
RSS sense, since they are computed on the 
basis of the RSS shear, rather than being 
computed independently. Yet such a procedure 
provides reasonable estimates of the maxima. 
It is also apparent that the more shear 
dependent the actions are the more accurate 
the accepted procedure becomes. 

5. SUMMARY A N D DISCUSSION 

The limitations of the static methods 
for earthquake analysis of torsionally 
unbalanced building structures were discussed, 
and it w a s shown that some of the difficulties 
result from misinterpreting established 
procedures. A consistent procedure for the 
modal spectral analysis of torsionally 
unbalanced building structures has been 
adopted to compute the lateral forces on 
the a s s e m b l a g e s . In its general features the 
technique is similar to the procedure 
recommended by NZS 4203:1976 for regular 
structures w i t h large or small eccentricities. 

For the type of structure to which the 
proposed procedure is applicable, a three-
dimensional modal analysis can be easily 
carried out by means of two-dimensional 
programs. In terms of spectral modal analysis 
the procedure leads to a correct distribution 
of assemblage forces, whereas the semi-static 
code procedure may not. The procedure also 
results in a substantial simplification of 
the analysis compared with standard computer 
techniques now available to the structural 
engineer (16) m 

It m a y b e reasonable to assume that 
asymmetry in the stiffness distribution 
does not appreciably affect the total energy 
stored by the structure, so it may appear 
that the strength distribution among the 
assemblages is not of utmost importance 
provided s u f f i c i e n t lateral capacity and some 
excess ductility are available. Therefore, 
m i g r a t i o n of the centre of rotation resulting 
from uneven yielding may not be a major design 
concern. H o w e v e r , it is widely believed 
that w h e n capacity design is not sufficiently 
related to the probable elastic force 
distribution among assemblages as induced by 
torsion, u n e v e n rates of stiffness and 
strength d e g r a d a t i o n m i g h t lead to earlier 
failure of t he w e a k e r f r a m e s ^ ^ . A l s o , 
there is some evidence to the effect that the 
ductility factor method of analysis, i.e. 
an analysis in w h i c h equal elastic and 
plastic deformations are assumed to o c c u r ^ ^ , 
may also be applicable to torsional problems 
( 2 0 ) m on the other hand it may be argued 
that underestimating the strength of frames 
on the "stiffer" side of the building 
relative to those on the "flexible" side, as 
Code based designs are likely to do in some 
ca s e s , m i g h t , for the same reasons, reduce 
torsional effects by shifting the effective 
axis of r i g i d i t y in the direction of the 
mass axis. 

It is n o t k n o w n to w h a t extent an 
approach that advocates a probabilistically 
m o r e c o n s i s t e n t lateral force distribution 

is likely to lead to a much better seismic 
response. However, if agreement with 
probable elastic maxima is the criterion, 
static methods o f torsional analysis are not 
sufficiently accurate w h e n coupling effects 
are strong. A t present, not much is known 
on the inelastic behaviour of torsionally 
unbalanced building structures and the 
subject deserves further study. 
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8. NOTATION 

a = distance of assemblage from mass 
centre 

a Q = m o d a l shape zero-crossing point from 
mass centre (Fig. 3) 

b = p l a n dimension of building perpendic
ular to direction of excitation 

CM = centre of mass 
CR = centre of rigidity 
DoF = degrees-of-freedom 
e = static eccentricity 

= dynamic or design eccentricity 

e* = e/p = eccentricity ratio 
= lateral rigidity (along y-axis) 

torsional rigidity defined a t centre 
of m a s s or rigidity respectively 

K = stiffness matrix 
m - storey mass 
M = mass m a t r i x 
N = number of storeys 
RSS = square root of sum of squares 

' Bo 

"d 
SR 
T 
TR 
U 

* 9 

u 

x 
y 

- acceleration spectrum 

= displacement spectrum 

= shear ratio 
= torque or natural period of vibration 
= torque ratio 
= uncoupled generalised coordinates 

(single storey structure) 

= ground acceleration time history 

= shear force 
= shear force in the associated 

symmetrical system 
= axis of symmetry 
= lateral displacement or displacement 

vector 
= lateral displacement of the related 

symmetric structure 
= planar mode shape coefficient 
= modal participation factor 
= correction coefficient in RSS formula 
= damping ratio 
= angle of rotation 
= mass radius of gyration 
= mode shape vector along height of 

building 
= mode shape vector along height of 

building for associated 2-dimensional 
system 

= planar mode shape of torsionally 
uncoupled 2-DoF system 

= circular frequencies of torsionally 
coupled system 

= uncoupled translational circular 
frequency 

= uncoupled torsional circular 
frequency defined at m a s s or rigidity 
centre respectively 

= torsional to lateral uncoupled 
J frequency ratio defined at mass or 

rigidity centre respectively 

APPENDIX A - TWO DEGREES OF FREEDOM SYSTEMS 

The two degrees of freedom for the 
system given in Fig. 1 are the lateral d i s 
placement y and a•rotation 6 about the vertical 
axis. The lateral and torsional rigidities 
KY and KQ of the 2-DoF system are obtained 
from the individual resisting members 
(assemblages, if they are not simple c a n t -
ilvers) in the usual w a y , namely 

ul,2 

y 

w 0 . e' 0o 

K = I K. 
y 4 i y 

(Al) 

K = I K. x. 2 + £ K. y . 2 + Z K = K 0 + K e 2 

0 iy I I X J i . 10 9o y 

where x̂ _ and y. are the perpendicular 
distances to the mass centre and K^Q is the 
torsional rigidity of an assemblage about 
its own axis, w h i c h for planar m e m b e r s may 
be neglected. The eccentricity e of the 
rigidity centre CR from the mass centre CM 
is given by 
e = i Z K . y x . (A2) 
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Under earthquake excitation U in the 
y direction, the equations of motion for the 
system assuming elastic behaviour read: 

y 

> + 

u 
g 

(A3) 

in which m = storey m a s s , p 
gyration about CM, and 

mass radius of 

u) = /K /m , 03 Q = /K Q/mp^ y y 0 6 
2 2 2 e* = e/p , ft = ojn /oj = 

9 7 y 

con = / k n /mp^ 6o 6 o 7 M 

ft 2 + e * 2 

o 

Note that p0 rather than 6 is used in order 
to render Eq. (A3) dimensionally compatible. 
Since orthogonal damping is assumed the 
relevant term does not appear in Eq. (A3) 
b u t it w i l l b e defined in the two uncoupled 
m o d a l equations that follow. The uncoupled 
frequencies coj_ , u)2 and the modal matrix \\> 
can be easily obtained from the associated 
eigenvalue problem of Eq. (A3) and are 
given by 

2 , 2 

1,2 y 
and 

1 -h ft' 

*yl * y 2 

*61 ^62 

1 /(l - ^ 2 ) 2 / 4 + e * 2 

1 Y 

/ T " 2 
1 + Y -Y 1 

(A4) 

(A5) 

^ak 5 5 S d k r k ^ak (A9) 

The m o s t probable response of a m u l t i -
degree of freedom system w i t h w e l l separated 
natural frequencies is given by the root 
square of the sum of squares (RSS) formula, 
so that 

RSS ( y a k ) al ' a 2 
(A10) 

When and are sufficiently close, 
as is often the case w i t h asymmetric b u i l d i n g s , 
the corrected RSS formula should be used 
( 6 , 7 ) . 

RSS ^ a k } y a l + 

2 . 2 7 al y a2 
^a2 +

 1 M 2 
1 +£ 

(All) 

w h e r e for small values of ri^ and n-J_ = ri2 - n 

e. = n (OJ1 + OJ 2) 
(A12) 

N o t e that in Eq. (All) y a ^ is to be taken 
w i t h the sign that its unit impulse function 
has w h e n it attains its maximum numerical 
value. 

Sometimes the zero crossing points of 
the mode shapes ( a ^ in Fig. 3) are used to 
evaluate the modal displacements along the 
x-axis. The relevant expressions w e r e first 
given by K o s k o ^ 2 1 ' : 

a Q k = e/(l - oo 2/u)^ 2) ? k = 1 , 2 (A13) 

w h e r e 

Y = (1 " 

Letting 

> = 

U ) l 2 / a ) t 2 ) / e * 

u 

(A6) 

p r e m u l t i p l y i n g Eq. (A3) by the transpose of 
]J> and adding the damping terms, the following 
uncoupled equations are obtained: 

iî  + 2n^ u 2 + 0 0]_ 

u 2 + 2 n 2 u 2 + u>2 

i\ u 
1 g 

r 0 u 
2 g 

(A7) 

w h e r e the m o d a l participation factors 
(k = 1,2) are given by 

r i = 1 + y 2 
_ 

"2 V L + y 

and m and n 2 are the damping ratios. Using 
the harmonic relation between the spectral 
values w e h a v e S 3 =- S a / u ) 2 , w h e r e S a is the 
specified acceleration spectrum. Once S^ 
and r are computed, it is possible to 
evaluate the m o d a l displacement of any frame 
(at a d i s t a n c e a from CM) using the following 
e x p r e s s i o n s : 

ak yk 
and 

a (A8) 

The importance of this expression l i e s , 
h o w e v e r , in the light that it sheds on the 
lateral-torsional coupling problem. W h e n 
ft = 1 it can easily be shown that a ^ is 
independent of e, i.e. the mode shapes are 
the same for large and small eccentricities. 
This fact led some engineers to believe 
that violent rotations might be expected 
even with small eccentricity provided the 
frequencies are sufficiently close. This 
however does not appear to be the case as 
can easily be verified by means of Eq. (All) 
the two modes are practically in phase so 
that algebraic summation gives the same 
results. 

10. APPENDIX B - MULTI DEGREE OF FREEDOM 
SYSTEM 

The dynamic properties of a m o n o -
symmetric torsionally unbalanced building 
structure may be obtained from the solution 
of the eigenvalue problem given by: 

K e*K 

e*K ~ K 

M 0 

0 M 
L 

0 

> =5 < > 

0 
(Bl) 

in which Ky, K^ = the lateral and torsional 
stiffness~matrixes of order N (= number of 
storeys) with respect to CM, M = diagonal 
mass matrix, p = mass radius of gyration 
and $ x = lateral and torsional m o d e 
shape vectors. Note that only w h e n K Q is 
proportional to Ky is the following 
procedure exact. Methods for assembling 
Ky from the individual properties of the 
assemblages are well known (e.g. ( 2 2 ) ) and 
w i l l not be discussed h e r e . 
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The uncoupled procedure which was 
described in some detail in References 9 
and 18 will be now briefly outlined. Let 
u ) v , o)0 and $ V o , $ e Q be the natural frequencies 
and mode shapes respectively of the following 
two uncoupled N x N systems, then: 

(K - u, e
2 p 2 M ) $ Q o = O 

(B2) 

(B3) 

V W 
(2x1) (2x2) 

0 $ 

(2x2N) 

0 

T 

M O 

0 M V (BIO) 
(2NX2N)(2Nxl) 

Paper received 15 December, 1978. 

Note that each of these two systems is 
a problem of the type that must be solved 
when the dynamic two-dimensional procedure 
for asymmetric buildings of NZS 4203:1976 
is followed. The natural frequencies of the 
actual system (Eq. (Bl)) are given by 

<ulVtty> j " ( 1 + °j>" / 2 T / ( I - «*) 2 / 4 + e * 2 

(B4) 
where 

Q 2 = oj 2
 a ./u>2. 

3 6 J Y3 

which are identical to the 2-DoF expressions 
given in Appendix A. It can also easily be 
shown that the mode shapes of Eq. (Bl) may 
be expressed by the N-DoF mode shapes factored 
by the 2-DoF modal ordinates, namely: 

p * 0 j k 

where 

you yjk 

= *0oj *9jk 

j = 1 N, k = 1,2 
(B5) 

(B6) 

and 

y j = 

"yjl *yj2 

"ejl *8j2 1 + Y j 

(1 - 0) . 1 /0) / )/e* 

(B7) 

which are identical to Eq. (A5). 

As has already been pointed out, in 
elastic analysis w e are interested in the 
response of the assemblages (walls and frames) 
comprising the structural system rather than 
in the overall lateral or torsional forces 
acting on the w h o l e building. Therefore 
for a given assemblage situated at a distance 
a along the x-axis from the mass centre w e 
have: 

*ajk = *yjk + ? *6jk ? 3 « L . . . N , k « 1,2 
(B8) 

The modal displacement of the assemblage 
due to earthquake base acceleration U are 
obtained from the expression: " 

^ajk ~ S d j k ^jk $ a j k ; j = 1....N, k = 1,2 
(B9) 

w h e r e S ^ i s the spectral displacement 
associated with the natural frequency ui^ 
and T j ^ is the m o d a l participation factor 
given by: 
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FIGURE 4: PLAN OF S INGLE STOREY STRUCTURE 
STUDIED BY ELORDUY AND ROSENBLUETH (6,7). 
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F I G U R E 6 : U P P E R B O U N D S F O R L A T E R A L D I S P L A C E M E N T O F F R A M E S : 

S T A T I C A N D D Y N A M I C A N A L Y S E S W I T H W H I T E N O I S E S P E C T R U M : 

e* = 0 . 2 . ( F O R T H E C O D E C A S E S C A S E S O N L Y a c 2 = 0 . 5 2 W A S U S E D ) 


