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ABSTRACT

Post-disaster reconnaissance reports frequently list non-structural components (NSCs) as a major source of
financial loss in earthquakes. Moreover, minimizing their damage is also of vital significance to the
uninterrupted functionality of a building. For efficient decision making, it is important to be able to estimate
the cost and downtime associated with the repair of the damage likely to be caused at different hazard levels
used in seismic design. Generalized loss functions for two important NSCs commonly used in New
Zealand, namely suspended ceilings and drywall partitions are developed in this study. The methodology to
develop the loss functions, in the form of engineering demand parameter vs. expected loss due to the
considered components, is based on the existing framework for the storey level loss estimation.
Nevertheless, exhaustive construction/field data are employed to make these loss functions more generic. In
order to estimate financial losses resulting from the failure of suspended ceilings, generalized ceiling
fragility functions are developed and combined with the cost functions, which give the loss associated with
typical ceilings at various peak acceleration demands. Similarly, probabilities of different damage states in
drywall partitions are combined with their associated repair/replacement costs to find the cumulative
distribution of the expected loss due to partitions at various drift levels, which is then normalized in terms
of the total building cost. Efficiencies of the developed loss functions are investigated through detailed loss
assessment of case study reinforced concrete (RC) buildings. It is observed that the difference between the
expected losses for ceilings, predicted by the developed generic loss function, and the losses obtained from
the detailed loss estimation method is within 5%. Similarly, the developed generic loss function for
partitions is able to estimate the partition losses within 2% of that from the detailed loss assessment. The

results confirm the accuracy of the proposed generic seismic loss functions.

INTRODUCTION

Non-structural components (NSCs) make up a considerable
proportion of the total building cost [1], often outweighing the
cost of structural components in most building uses.
Moreover, performance of NSCs (and contents/services) is
crucial for the continuous operation of the building. Even at
small to moderate levels of ground shaking, where no
noticeable structural damage occurs, damage to non-structural
components (such as acoustic ceilings) and services can cause
a substantial downtime resulting in a significant loss of
income. Examples of damage caused to suspended ceilings
and partition walls during past earthquakes are shown in
Figures 1(a) and 1(b), respectively. Studies have shown that
damage to non-structural components such as drywall
partitions and acoustic ceilings (as well as generic

components) comprise a significant proportion of the total loss
in moderate earthquakes where no structural collapse occurs,
and loss due to structural damage contributes little to the total
loss [3]. The weeks-long closure of the modern BNZ building
in Wellington, New Zealand, primarily due to ceiling damage
during the M,, 6.5 Seddon earthquake on 16 August 2013 is a
recent example. Recent earthquakes in New Zealand have
directed the attention of engineers, policy makers and
insurance companies toward NSCs and their significant
contribution to the owverall financial loss caused by such
disasters, and significant progress has been made lately in
understanding and improving seismic performance of NSCs

[4].

Figure 1: (a) Collapsed suspended ceilings and (b) gypsum block partitions [2].
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Estimation of loss in buildings has been a topic of interest
since the early 1930s. Freeman [5] in one of the earliest
studies of loss estimation, provided rough estimates of
probable average earthquake loss ratios for different localities
and building types to be employed by insurance industry.
Scholl [6] introduced a deterministic component-based loss
estimation methodology to improve prediction of loss in high-
rise buildings. He defined damage to various structural and
non-structural components as a percentage of component
replacement cost. This damage was estimated using motion-
damage functions previously developed for high-rise
buildings. Steinburgge [7] proposed a methodology that linked
ground motion intensity to percentage loss for different classes
of construction. Monte Carlo (MC) simulation was employed
by Singhal and Kiremidjian [8] to account for various
uncertainties including ground motion, estimation of damage
and repair cost in predicting loss. Application of quantitative
measures of ground shaking in estimation of loss was
developed in 1997 through the introduction of HAZUS® to
reduce the uncertainties associated with the seismic hazard [9].

Considering the enormous need of the present day, significant
advancement has been made in the seismic loss estimation
framework during the last decade [10-11]. Probabilistic loss
estimation methodology for providing quantitative measures
of seismic performance in terms of the economic losses are
reported by several researchers [3, 12-15]. Loss disaggregation
proposed in earlier studies provides a way to identify the
ground motion intensities, levels of structural response and
structural and non-structural components that primarily
contribute to damage and direct economic losses. The results
of the disaggregation of the economic losses estimated for a
case study reinforced concrete (RC) building showed that the
majority of economic losses are from NSCs. Recently, several
research projects have been conducted on seismic loss
estimation of buildings incorporating the effect of NSCs
according to the FEMA P-58 [16] methodology. More
recently, Cutfield et al. [17] used this methodology for life
cycle analysis of base-isolated buildings.

It is gradually being accepted in the earthquake engineering
community that the current seismic design approach, which
aims for serviceability in small earthquakes and life safety in
moderate/large  earthquakes is not enough to meet
stakeholders’ expectation. In future versions of performance
based seismic design, minimization of seismic losses from
different sources (i.e., damage, downtime and injury) must be
added as a key objective. A concept of a similar seismic
design approach, called Loss Optimisation Seismic Design
(LOSD) was discussed earlier by Dhakal [18]. For such a loss-
based seismic design approach, designers need to estimate the
likely building loss associated with structural and non-
structural components (including damage repair and
downtime) at ground motion intensities corresponding to
different design limit states.

Depending on the nature and extent of damage incurred, NSCs
require different levels of repair ranging from minor repair to
complete replacement, which are both costly and time
consuming. The downtime associated with this kind of
damage can impose a considerable financial burden on a
property that is otherwise structurally sound. Therefore, it is
advisable to consider non-structural damage in the early stages
of decision making. The current state-of-the-art in terms of
seismic loss estimation requires detailed component-based
modelling and a series of probabilistic computations.
Although some computer based tools, such as SLAT [19] and
PACT [16] do exist, their use still requires significant expert
knowledge, and is not hence conducive for everyday use by
design engineers. Ramirez and Miranda [15] proposed to
develop floor level generalized loss function for quick
estimation of seismic loss for typical building categories. They
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combined the distributions of several components for a typical
building category instead of actual quantities of the
components to develop engineering demand parameter (EDP)
vs. expected loss functions. After combining the expected loss
of all the probable components at a floor level, generalized
floor level loss functions were proposed. Later, Farokhnia and
Porter [20] proposed a procedure for estimating the mean non-
structural vulnerability of a building category. The procedure
takes structural properties, such as floor area and structural
system, the quantity of the top five or so most cost intensive
NSCs and the total non-structural construction cost of the
building. However, the procedure is effectively applicable
only when the detailed component inventory is available to the
assessing engineer, which may not be feasible at the early
design stage. Therefore, probabilistic generalized relationships
for different structural and non-structural components need to
be developed for estimating the expected losses at given EDP
level.

The primary aim of this work is to develop EDP wvs.
generalized expected loss functions for the suspended ceilings
and drywall partitions used in typical RC office buildings in
New Zealand. Herein, the loss functions are developed in line
with the methodology proposed by Ramirez and Miranda [15].
However, the component distributions are generated using
extensive data collected from various office buildings in
Christchurch, New Zealand. Furthermore, the generalized loss
functions are normalized in terms of the total building cost.
The normalized generic seismic loss functions, developed
herein for the suspended ceilings and drywall partitions, can
readily be used to estimate likely losses due to these
components at different levels of EDP in typical RC office
buildings in New Zealand. Major objectives of this work are:
(i) to generate component distributions of suspended ceilings
and drywall partitions based on data collected from typical
office buildings in Christchurch, New Zealand, and (ii) to use
these component distributions along with the cost information
in developing the generalized loss functions for rapid
estimation of expected seismic losses contributed by the
suspended ceilings and drywall partitions.

METHODOLOGY

For loss-based design, designers need to estimate likely losses
from different building components at different limit states; so
that the component losses can be assembled to estimate the
total building loss and compared with tolerable loss limits. In
probabilistic calculation, probable loss is contributed by the
prospect of total building “collapse”, and the building not
collapsing but sustaining different extent of “damage” to
different components. As life safety and collapse prevention
are the core aims of seismic design, the probability of building
collapse at the limit states used in design is extremely low (if
not nil), therefore can be justifiably ignored. The present day
seismic loss estimation methodologies are primarily based on
the framework developed at the Pacific Earthquake
Engineering Research (PEER) centre and the details can be
found elsewhere [10-12, 21]. Here, the relationships pertinent
to the objectives of the present study are discussed.

At a given limit state, the likely seismic loss from a
component for a given building is the product of three
quantities: (i) the likely engineering demand parametre (EDP)
at the limit state, (ii) likely extent of damage at the limit state
EDP and (iii) likely cost to repair the damage (or to replace
the irreparably damaged component). The above statement
only provides a simple conceptual representation of a complex
probabilistic problem. If a deterministic relationship existed
among the seismic intensity, EDP, damage and repair cost, the
above statement could be readily used to calculate the
component loss needed for loss-based decision making.
Nevertheless,  uncertainties invariably exist in all
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interrelationships making the process more complex. Some
EDPs take different forms depending on the component under
consideration and the damage needs to be evaluated in terms
of a number of discrete milestones.

The most uncertain/vague among the three interrelationships is
the first; i.e. between the EDP and the limit state. For this
discussion, let us keep aside the unavoidable record-to-record
randomness among different ground motions scaled to the
same intensity corresponding to the limit state. Even for a
single ground motion, the EDP (peak inter-storey drift ratio
(IDR) or peak floor acceleration (PFA)) varies between
different buildings and even for the same building between
different floors/storeys. Hence, it is extremely difficult (if not
impossible) to generalise the EDP-limit state relationship for
non-structural components. Consequently, in this study
generic loss functions are derived for a wide range of values of
EDP. The functions can readily be applied for any
combination of limit state and floor/storey hosting the
component. However, note that the corresponding EDP will
have to be assessed separately beforehand through structural
analysis. Herein, the expected EDPs are computed based on
the simplified procedure stipulated in the New Zealand
Standard [22]. However, more refined approaches (e.g. [23-
24]) can be followed, or detailed non-linear dynamic analysis
can be performed to obtain the EDPs for the considered
building at a given site.

Moreover, the repair/replacement costs of most non-structural
components are quoted per unit area/number. Hence, the
derived cost will have to be multiplied by the total
area/number of the component in the floor/storey of the
building under consideration. Despite the scope of the
functions developed here being limited to RC buildings used
as offices, the density of non-structural components such as
ceilings and partitions can vary widely in such buildings. To
account for this variation and the inherent uncertainties in
other relationships, ideally a series of integrations using
probabilistic interrelationships between different variables,
such as those used in seismic risk assessment methodologies
[14], should be conducted. Although in this study,
deterministic calculations are used to develop the loss
functions, the uncertainties are accounted for, and propagated
through to the final step using MC simulation by coding a
program in MATLAB®.

To generate the input values for MC simulation, the variations
need to be quantified in advance are: (i) variation of the
component amount per square metre of building plan, (ii)
variation of damage for a given EDP, and (iii) variation of the
repair costs for different damage categories. The second
variation comes from the fragility functions, which are well
researched, and can be found in literature for most of the
components. For quantifying the other two variations, two sets
of data were collected for each component, i.e. suspended
ceilings and drywall partitions. These data sets include: (i)
distribution of these two components in typical RC office
buildings, and (ii) costs required to repair different categories
of damage to these components. These data were statistically
fitted to suitable probability distributions. The input
parameters for the MC simulations were generated randomly
based on the assigned probability distribution functions.

Expected loss due to a component at a floor level for a given
value of EDP (Lyepp) can be calculated deterministically as
[2, 15],

Loer = A X P(Di | EDP)ch/D, (1)
i=1

where A is the total area/number of the component in the

floor; /o is the repair cost per unit area of the component for

the damage state D;; nps is the number of discrete damage
states considered in the component fragility; and P(D; | EDP)
is the probability of damage being in the i damage state for
the given EDP value (say edp). Here, l.,o, 8re generated using

the assigned probability distributions based on the collected
data, whereas P(D;|[EDP) can be computed from the fragility
functions as,

o) o)

for0<i<np (2a)
and
P(D, | EDP = edp):d{ln(egF)]/BiJ
for i=npy, (2b)

where, 0; and B; are the median and logarithmic standard
deviation of the capacity to resist its i"" damage state,
respectively; and ®() is the standard normal cumulative
distribution function.

For a given EDP, this calculation is repeated with different
randomly generated values of the inputs. The losses calculated
from the large number of MC simulations are then interpreted
probabilistically to obtain the mean and standard deviation.
This process is repeated for different values of EDP; and
finally the expected component loss (mean as well as the
upper and lower bound) functions are generated in the form of
loss vs. EDP plots. In order to test and confirm the accuracy
and feasibility of the proposed loss functions, data obtained
from some existing buildings are used as case studies.

Component distribution data is collected from RC office
buildings located primarily within Christchurch Central
Business District (CBD). Note that the distributions of NSCs
(ceilings, partitions, etc.) obviously depend on the room sizes,
which are primarily influenced by the use of the buildings.
Hence, the outcome of this work may not strictly apply to
buildings used for other purposes, which require distinctly
different room sizes. Although the component distribution data
was taken from buildings in Christchurch, they should be
representative of similar buildings throughout New Zealand,
as the practice within the country does not vary widely. It is
assumed that enough data samples were collected to capture
the variability/uncertainty. The cost data were taken from
different sources (builders, contractors, suppliers and
manufacturers) serving the whole country; so there should not
be any bias induced by the temporary demand surge in
Christchurch following the recent Canterbury earthquakes.
The following two sections describe the data collections for
component  distribution  generation,  development  of
normalized generic loss functions and case studies for
suspended ceiling and drywall partitions, respectively.
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(Armstrong [25])

Figure 2: Schematic diagram and details of suspended ceiling.

SECTION I: SUSPENDED CEILINGS

Suspended ceilings are non-structural or architectural
components that serve various purposes in a building. They
provide a clean, pleasant overhead finish surface that hides
services, pipes, ductwork etc. They are also effective in sound
absorption and fire protection besides adding aesthetic
character to the space. Suspended ceilings used in New
Zealand typically consist of inverted T-shaped galvanized
steel beams that form 1200 mm x 600 mm or 600 mm x 600
mm modules to support ceiling panels (Figure 2). The
suspension system is supported by the structure above via
either vertical steel hanger wires or braces. On the perimetres,
the ceiling is either fixed to the structure via rivets and clips or
free to slide on perimetre angles. These ceilings are very
common in commercial buildings and they suffered extensive
damage during the 2010 - 2011 Canterbury earthquakes [26-
28]. Damage to the ceilings can be the result of components
reaching their load carrying capacity. For example, end-fixing
rivets can yield in shear or can be pulled out due to large axial
force, and grid connections can break under tension. This
damage is the result of the inertial force induced in grid
members by the floor acceleration.

Distribution of Suspended Ceilings in Office Areas

Ceiling size refers to the total area of the ceiling continually
connected through grid elements. Therefore, the assumption
can be made that the ceiling size is equal to the size of the
room. This assumption implies that the distribution of room
sizes provides the distribution of ceiling sizes. However, for
rooms of significantly large dimension, the ceiling systems
were found to be bounded and separated by structural
components, such as intermediate beams. In that case, the
ceiling area was considered equal to the smallest area enclosed
by structural members. For this purpose, both architectural and
structural drawings of a large number of Christchurch
buildings damaged in the 2010-2011 Canterbury earthquakes
were accessed. A library of drawings corresponding to 725
rooms from 29 different office buildings located in
Christchurch CBD was collected. The number of stories in the
buildings under consideration varied from 1 to 13.
Nevertheless, detail drawings corresponding to all floor levels
of a building and all rooms at a particular floor level were not
available. Therefore, no discriminations were made in the
collected data regarding the floor level or number of stories in
the building. Only clearly distinguishable floor areas were
measured, and ratios between the long side and shorter side
(room aspect ratio) were noted. In total, 606 data

corresponding to the ceiling area and 542 data corresponding
to the room aspect ratio were recovered for the present study.
The difference between the sizes of these two datasets
represents the number of rooms subdivided by intermediate
beams resulting in multiple ceiling areas for a single room.

The histogram and the cumulative probability distribution of
the observed ceiling areas are presented in Figures 3(a) and
3(b), respectively. Two theoretical cumulative distribution
functions (CDFs), normal and lognormal, are also presented in
Figure 3(b). The observed data are fitted with normal
distributions (mean = 34.92 m?, standard deviation = 19.82
m?) and lognormal distributions (median = 30 m? logarithmic
standard deviation = 0.57 m?). To compare the appropriateness
of the theoretical distribution functions, two different
goodness-of-fit (GOF), Chi square (y?) and Kolmogorov-
Smirnov (K-S) tests are carried out. The y? statistics (p value)
and K-S statistic (Dpmax) are reported in the figure for
comparison. Lognormal distribution is found to fit better to the
observed ceiling areas.

It is observed from Figure 3 that only about 25% of the rooms
have an area of less than 20 m?. The relatively large proportion
of bigger rooms in this distribution is due to the fact that it is
common in New Zealand to have large halls divided into staff
compartments using half-height board partitions where the
ceilings span over the whole length of the hall. It is noted that
majority of the rooms in buildings are rectangular; hence, the
ceiling grid members spanning along the longer dimension of
the room are subjected to greater forces, and the longer side of
the ceiling is the critical direction if a ceiling is subjected to
similar accelerations in both directions. Consequently, in
addition to the distribution of ceilings area, distribution of the
longer side length of ceilings is also required. For this purpose,
aspect ratios of the studied rooms were also measured. It is
assumed in this study that the room aspect ratio represents the
ceiling aspect ratio. The histogram and the cumulative
probability distribution of the observed room aspect ratios are
presented in Figures 4(a) and 4(b), respectively. Two
theoretical CDFs, normal and lognormal, are also presented in
Figure 4(b). From the GOF tests it is observed that the room
aspect ratios are better represented by the lognormal
distribution (median = 1.38 and logarithmic standard deviation
= 0.204) as compared to the normal distribution (mean = 1.44
and standard deviation = 0.307).

Having the ceiling area (A) and the room aspect ratio (r), the
longer side (L.) length is obtained as,

L =vAxr 3
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Since the area and the aspect ratio in this equation follow a
probabilistic distribution, MC simulation is used to combine
these two distributions and to generate the distribution of the
longer side length of ceiling. The resulting cumulative
distribution (average corresponding to the 10,000 simulations)
of the longer side of ceilings is presented in Figure 5.
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Figure 5: Cumulative probability distribution of longer side
length of ceilings.

Development of Generalized Loss Function for Suspended
Ceilings

Generalized Fragility Function for Typical Ceiling Systems

This section aims to develop a generic fragility function which
provides the probability of failure in a suspended ceiling at
any given floor acceleration and for any given ceiling size. For
the purpose of this study, the relationship between the peak
accelerations at the floor level and ceiling level has not been
taken into account. Therefore, the acceleration used while
developing the fragility curves is assumed to be the peak
acceleration applied on the ceiling grids and connections. The
values of acceleration applied on the ceiling system can be up
to two times higher than the PFA depending on the period of
the ceiling system [22]. By combining the distribution of
longer side length of the ceiling with the benchmark fragility
function for a standard length, generalized fragility functions
for any ceiling size can be generated. The following
paragraphs describe the details of this process.

Paganotti et al. [29] tested a large number of grid members
and connections of a typical suspended ceiling system. Based
on the component test results, they developed fragility
functions for ceilings with different sizes in the longitudinal
direction. The fragility curve produced in their study was
based on the 2.4 mm rivet (i.e. rivet having 2.4 mm diametre)
connections between the perimetre angle and the grid



members. The ceiling measured 12 m in the longer direction,
and its unit weight was approximately 10.5 kg/m?. Since many
suspended ceilings in New Zealand currently use 3.2 mm
rivets, a fragility curve is developed for a suspended ceiling
category of the same unit weight and length, however with 3.2
mm rivet for the perimetre connection. Table 1 shows the
shear capacity of different rivet sizes. A third fragility curve is
developed for a ceiling category with 3.2 mm rivets but lighter
unit weight. The total unit weight of the third ceiling is
assumed as 6.5 kg/m? These additional two curves are
produced based on the fragility curves of most critical ceiling
components [30]. Figure 6(a) shows these three fragility
curves corresponding to different rivet sizes and unit weights.
Table 2 shows the values of median and standard deviation of
the acceleration capacity corresponding to the three ceilings
evaluated here.

Table 1: Shear and tensile strength of aluminium rivets [31]

Diameter Shear strength (kN)  Tensile strength (kN)
2.4 mmor 3/3" 0.400 0.534
3.2mmor 1/8" 0.756 0.979

Table 2: Values of median and standard deviation for

ceilings
Weight Rivet size Median Standard deviation
(kg/m?) (mm) () ©
10.50 24 0.52 0.235
10.50 3.2 1.00 0.120
6.50 32 1.63 0.195

The seismic force in ceiling components is directly related to
the seismic weight applied on it. Therefore, the maximum
seismic force induced in a ceiling can be assumed directly
proportional to the length of the ceiling or the length of grid
member [30]. In other words, the floor acceleration a ceiling
can sustain decreases linearly with the ceiling length.
Consequently, knowing the failure probability of the 12 m
long ceiling at a given acceleration, the failure probability of
ceilings of different lengths at the same acceleration can be
computed. Generalising this interrelationship, the converted
acceleration capacity (a,) of ceilings with a longer side length
of L, can be obtained as,

12
a =" xay, 4)

where, a;, is the acceleration capacity of a 12 m long ceiling
system.
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Once again, as the longer dimension of ceilings follows a
statistical distribution, MC simulation is performed to obtain
the distribution of the converted accelerations. For a given
acceleration (say 0.1g), a random value of the longer side
length is generated conforming to the previously defined
distribution  (Figure 5). The acceleration (i.e. 0.19g)
corresponding to the generated length is then converted to a 12
m ceiling length using Equation 4. The probability of failure
corresponding to the converted acceleration is obtained for
each ceiling type using the benchmark fragility curves (i.e.
Figure 6(a)) developed for a 12 m ceiling length. This failure
probability is taken as the probability of failure of a ceiling of
the generated length when subjected to the given acceleration
(i.e. 0.1g). The procedure is then repeated for multiple length
realizations. The mean failure probability of the ceiling type
(independent of the length) subjected to the original floor
acceleration (i.e. 0.1g) is then obtained by taking the average
value of the calculated failure probabilities. The procedure is
repeated for various accelerations, and the resulting generic
mean fragility functions of ceiling systems independent of the
size can be generated as shown in Figure 6(b).

Figure 6(b) indicates that the probability of ceiling failure
becomes immediately significant at near-zero accelerations for
the 10.5 kg/m? ceiling with 2.4 mm rivets; this is partly a by-
product of the probabilistic derivation process and partly due
to the wvulnerability of large sized ceilings even at small
accelerations. It is noted that only one damage state (termed as
failure) is used in the ceiling fragility. Failure of ceilings in
this context refers to the state where the ceiling grids
supporting the tiles fail at one point, which triggers successive
falling of the ceiling tiles. At this damage state, it is
economically and technically not efficient to repair the
ceilings, consequently replacement of the ceilings is an
obvious choice. It is worth mentioning that other damage
states corresponding to the falling of some tiles without
damaging the grid members are not considered in this study.
This is justifiable as the repair costs corresponding to these
damage states are insignificant as compared to the replacement
of complete grid. Although, the repair cost is negligible
corresponding to these damage states, dislodgement of few
tiles and/or minor damage to the grid members (not complete
failure) are not rare, particularly at the lower levels of
acceleration. Therefore, other limit states as defined by
Badillo-Almaraz et al. [32] and other researchers can be
considered in the calculation when more refined seismic loss
estimation is necessary.
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Figure 6: (a) Fragility curve for 12 m long suspended ceilings; (b) generalized fragility functions of typical suspended ceilings.
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Replacement Cost for Suspended Ceilings

To derive a generic loss function, which indicates the likely
replacement cost of typical ceiling systems subjected to a
given acceleration, information on the replacement cost of
various types of ceilings with different configurations was
collected. The information on the replacement cost of the
ceilings was obtained from local builders, some of the ceiling
suppliers in New Zealand (Armstrong™ [25] and USG
Boral™ [33]), from employees of construction companies, and
the price range in Rawlinson’s construction handbook [34].
Information received from more than 15 sources, including
internet listing and random construction workers, were
considered. The relatively small sample size is assumed
sufficient for this study. The collected data was fitted to a
normal distribution. The mean and standard deviation of the
replacement cost per square metre of suspended ceilings were
amounted to NZ$93.5 and NZ$5.83, respectively.

Generic Expected Loss Function for Typical Ceilings

As the generic fragility distinguishes between only “collapse”
and “no collapse” without considering any other intermediate
damage states (for the reasons explained earlier), the financial
loss comes from the probability of damage requiring the
compete ceiling system to be replaced. Considering only one
damage state, Equation 1 can be rewritten for per square metre
of ceiling as,

I-ceiling/PFA = P(F | PFA)X Iceiling ®)

where, Leiiingpra 1S the expected loss per square metre of
ceiling; P(F|PFA) is the probability of ceiling failure under a
given peak floor acceleration (PFA), which can be obtained
from the generic fragility functions shown in Figure 6(b); and
lceiting i the cost of ceiling replacement. It is worthy to mention
that the actual acceleration at the ceiling level, instead of PFA,
needs to be evaluated for accurate estimation of the ceiling
loss.

Combining the distributions of the collected data on the
replacement cost and the generic ceiling fragility functions
(Figure 6(b)), 10,000 MC simulations are performed using
Equation 5 to generate a large number of values of the
expected loss per square metre of ceilings for a chosen value
of PFA. The process is repeated for different PFA values. The
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resulting average expected loss due to damage to the ceilings
at various acceleration levels is shown in Figure 7(a). The
estimated loss shown in this figure is independent of the room
size and longer side length of ceilings, therefore can be used
for various applications. However, the expected loss shown in
this graph is obtained based on the data collected in New
Zealand and Christchurch in particular. Therefore, it may not
be directly applicable for other locations due to variation of
prices in different places.

In order to be able to generalize the model, the expected loss
can be normalized with respect to the total cost of office
buildings per square metre of floor area. By collecting
building cost (range) from several building practitioners, and
analysing the collected data, the mean and standard deviation
of total building construction cost per square metre of floor
area were estimated as NZ$2034 and NZ$213, respectively. It
is noted that the data used to obtain this result is from the
construction cost of office buildings in Christchurch CBD.
The majority of the buildings in this research are low to
medium-rise buildings. It is likely that the variation of the
building construction cost data might have been wider if a
greater variety of building height was considered in the data
collection.

Since the total construction cost of buildings is uncertain, and
follows a distribution (fitted to a normal distribution in this
study), MC simulation was performed to normalize the
expected ceilings loss with respect to the total building cost.
The resulting normalized expected loss corresponding to
typical ceiling systems with respect to the acceleration is
shown in Figure 7(b). The normalized expected loss represents
the ratio between the expected cost of replacing damaged
ceilings and the total building cost. Knowing the acceleration
induced at each storey level, this curve enables a fast
prediction of the expected loss due to ceilings regardless of
their size, and without requiring any information regarding the
fragility of ceilings. As can be seen in the figure, the expected
loss due to ceilings is around 4.5% of the total building cost at
large accelerations for which the failure probability is
significantly high. At an acceleration of 1g, the minimal
improvement of grid fixture from 2.4 mm rivet to 3.2 mm rivet
reduces the loss ratio from 3% to 0.3%. Similarly, using
lighter ceiling tiles is effective in reducing the overall
expected loss due to ceiling failure.
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Figure 7: (a) Generalized expected loss curves of typical ceilings; (b) generalized and normalized (in terms of total building cost)
expected loss curves of typical ceilings.



Case Study

To examine the accuracy of the generic loss function
developed in the previous section, the expected loss attributed
by the ceiling replacement cost of a case study building is
computed through a rigorous approach, and compared with the
same obtained using the developed generic loss function. For
this case study, the loss data associated with only one of the
three variations of ceilings, i.e. the ceiling with 2.4 mm rivet
connections are used. The case study building is the
engineering building of the University of Canterbury,
Christchurch. This is a five storey RC building and each floor
is used for different purpose. The first and second floors
accommodate several lecture rooms, self-study rooms and a
large computer laboratory room for undergraduate students.
Similarly, postgraduate research rooms and a large drafting
room are located on the 3™ floor, and the top two floors of the
building are used as offices for the academic staff. The floor
area at each storey level is approximately 1680 m?.

Since the detailed architectural and structural drawings for the
case study building were available, a detailed and reasonably
accurate estimation of the expected loss due to the failure of
the ceilings with respect to the total cost of the building is
carried out. As the ceilings’ area and longer dimension are
known precisely, the uncertainty due to these variables is
omitted in the estimation. Hence, the ceiling cost is the only
uncertain parametre in this calculation. The first step in the
assessment of loss is prediction of engineering demand
parametres, i.e. peak floor accelerations in this case. To
estimate the peak floor acceleration at each storey level, the
method stipulated in New Zealand Standard [22] is utilized.
Note that, here the peak accelerations at the ceiling levels are
assumed to be same as PFAs for simplicity, however in
practice it can be significantly higher than the PFA.

The following steps are performed to assess the expected loss
due to failure of the ceilings for the case study building.

(i) For the given floor level and limit state under
consideration, calculate the floor acceleration demand
using the NZS1170.5 [22] approach. The accelerations
at the ceiling level need to be considered for a more
accurate estimate.

(if) Create a database of dimensions of all rooms in all
floors of the building.

(iii) Group the rooms according to their longer dimension;
put rooms with lengths within a predefined interval in
the same category.

(iv) Calculate the mean value of the longer dimension (i.e.
length) of each group.

(v)  For the mean value of longer dimension, calculate the
acceleration capacity of the ceilings using Equation 4
and generate the fragility curve/function (by converting
Figure 6(a)).

(vi) Estimate the failure probability of each group of ceiling
using the fragility function.

(vii) Within each group, sub-group the rooms according to
their shorter side lengths (close to each other within a
predefined interval).

(viii) Count the number of rooms in all sub-groups.
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(ix) Using the mean value of the longer and shorter
dimensions, calculate the mean area for all sub-groups.

(x)  For all sub-groups, multiply the failure probability by
the mean ceiling area, number of rooms and mean
ceiling replacement cost per unit area to obtain the
expected ceilings loss.

(xi) Obtain the total ceiling replacement cost for the floor by
adding the calculated losses from all groups/sub-groups
of ceilings.

(xii) Divide the total cost by the total area of the ceilings in
the floor to obtain the average expected ceiling loss per
square metre.

The above steps were repeated for all five floors in the
building. Note that the New Zealand Standard [22] requires
suspended ceilings in normal buildings to be designed for the
serviceability limit state (SLS). The natural period of the case
study building is computed to be about 0.6 sec. The peak floor
accelerations corresponding to the serviceability level
earthquake (25 year return period) are calculated as 0.32g,
0.43g, 0.53g, 0.64g and 0.64g, at the 1%, 2™, 3 4" and 5"
floor level, respectively. The peak floor accelerations at other
seismic intensity levels can be computed as per the standard
procedure explained in NZS1170.5 [22]. As an example, the
estimated values at each step are shown in Table 3 for the 4"
floor of the case study building for the SLS. As can be seen
from the table, the expected loss associated with ceilings is
estimated as NZ$29 per square metre area of the floor.

Alternatively, ceiling losses can also be estimated using the
loss function developed herein at the acceleration level
corresponding to the required hazard level. Figure 8 shows a
comparison between the expected ceiling losses estimated
using the generic loss function and those obtained by the
detailed loss assessment for the case study building for six
different return periods. Rather than showing the mean value
of the ceiling loss predicted by the loss function, a range of
values between the 5% to 95% confidence intervals are
highlighted.

It is evident from Figure 8 that ceiling losses in the case study
building fall within the 90% confidence interval of the
approximate method (i.e. using the generic expected loss
function) for all cases except a couple of floors at 25 and 50
year return periods. For most floors of the case study building,
the detailed loss assessment generally results in lower ceiling
losses than the median loss given by the generic loss function
(slightly conservative). For return periods of 25 and 50 years,
the exact ceiling loss in the 3™ floor is higher than that given
by the loss function developed in the paper. This difference for
the third floor is probably due to the presence of large amount
of open spaces (the drawing room), which has a
disproportionately long ceiling compared to the median value
of longer dimension of the rooms. However, the close
agreement between the average losses given by the loss
function with the calculated loss for the case study building in
general suggests that the proposed function can be relied on as
a quick and simple tool to estimate expected seismic loss
resulting from damage to suspended ceilings under different
floor accelerations.
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Table 3: Expected loss due to ceiling for 4™ floor of engineering building

Longer Average Failure Shorter  No.of  Average Total Loss
side(m) length (m)  probability side(m) rooms area(m?) area (m?) (NZ$)
15t02 7 5.25 36.75 299
2104 3 0.087 2to3 40 7.5 300 2,440
2to3 0 0 0 0
3to4 0 0 0 0
5t06 55 0.184 4t05 24 24.75 594 10,217
5to6 0 0 0 0
2t03 0 0 0 0
3to5 0 0 0 0
10to 11 10.5 0.503 5to6 13 57.75 750.75 35,272
6to7 0 0 0 0
7toll 0 0 0 $0
Total 1681.5 48,227
Expected loss (rounded off) 29 (NZ$/m?)
110 T T T
95 i '
= R=0.5
£ 100 yrs
q 80 ] R=13
& R =0.35 | R=1 1000 yrs
8 65 50 yrs R=0.75 500 yrs
= 250 yrs
°
3 _
O BN |ooee
g 0 |""r=o02s I
a 25 yrs
35 b L @ ]sfloor; & 2" floor; - 3™ floor; ® 4t floor; & 5% floor
20 '
0 0.25 0.5 0.75 1 1.25 15

Return period factor

Figure 8: Comparison of calculated expected losses due to ceilings for case study building with the generic expected loss function
predictions.
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Figure 9: Typical timber-framed partition wall [35].

SECTION II: PARTITION WALLS

A partition wall is a non-structural component located within
structural frames of a building in order to separate rooms. The
most common partition wall types used in New Zealand are
timber framed or steel framed partitions sheathed with drywall
boards (Figure 9). Despite their significance, building codes
do not have specific guidelines that help to reduce the damage
of partition walls and their contribution to the seismic loss of
buildings. For the drywall partition construction,
manufacturers’ specifications are normally used to meet the
standard for the finishing of gypsum linings [36]. Behaviour
of drywall partitions subjected to shear loading was previously

studied by Lee et al. [37], where the relationship between the
inter-storey drift and damage to drywall partitions was
developed under quasi-static cyclic loading conditions.
Partition walls have proven to be influenced even by small
drift levels; and as a result, suffer severe damage.

Distribution of Partition Walls in Office Buildings

In order to establish the distribution of partition walls in office
buildings, the total length of partition walls and the floor area
were collected from several office buildings in Christchurch.
For this purpose, drawings of a large number of Christchurch
buildings damaged in the 2010-2011 Canterbury earthquakes
were accessed. However, the partition layout is not usually
decided until later in the design and construction process.
Hence, most of the drawings in the archive did not include
final architectural plans, and those which did, had insufficient
information for the layout of partition walls; thereby making
this phase more difficult than anticipated. Although a library
of drawings corresponding to 725 rooms from 29 different
office buildings located in Christchurch CBD were searched, a
data set of 98 office floors could be collected that contained
sufficient information about the partitions. The length of
partition walls was established by measuring the length
individually for each floor. The height, width, material used
and number of door openings for the partitions were also
recorded at this stage. These were then used to calculate the
expected ratio of the partition wall length to the floor area for
a typical office building in Christchurch, which is expected to
represent the trend in New Zealand. The number of data is



assumed sufficient to represent the distribution of the partition
ratio (R = length of partition / floor area) for typical office
buildings in New Zealand. Floor wise distributions of the
partitions were not considered. The assumptions made during
the data collection were:

(i) Doors act as partitions and were included in the overall
length of partition wall.

(ii) Elevator shafts and staircases were considered to be
structural component and not included in the calculation.

(iii) Non-office related floors were ignored.

(iv) If not explicitly stated, floor areas were assumed to be
consistent throughout a building.

The histogram and the cumulative probability distribution of
the observed partition ratios are presented in Figures 10(a) and
10(b), respectively. Two theoretical CDFs, normal and
lognormal, are also presented in Figure 10(b). The observed
data are fitted with normal distributions (mean = 0.23 m/m?,
standard deviation = 0.058 m/m?) and lognormal distributions
(median = 0.22 m/m?, logarithmic standard deviation = 0.293
m/m?). Based on the GOF tests, it is concluded that the normal
distribution gives a better representation of the partition ratios.

Development of Generalized Loss Function for Partitions

Damage States and Fragility Functions for Partition Walls

The cost of repair/replacement for a partition wall can be
different based on the extent of the damage incurred. Hence,
to facilitate loss estimation, damage states should have
reasonable correlation with available repair
methodology/technology. In this study, the following three
damage levels are used to describe the damage to partition
walls.

(i) Minor visible damage (DS1): cracking of the paint and/or
drywall requiring taping and/or putty then painting.

(if) Moderate damage (DS2): broken drywall panel requiring
replacement of the drywall panel but not the frame.

(iii) Full replacement (DS3): damage to the panels and frame
requiring full replacement of the partition wall system.

It has extensively been shown that damage in partition walls
can be attributed to the inter-storey drift experienced by the
storey accommodating the partition wall. Porter and
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Figure 10: (a) Histogram of the collected data; and (b) fitted cumulative distribution functions for partition ratio.
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Kiremidjian [38] developed fragility functions for a number of
different non-structural components of a building. The
partition wall fragility function established in their study is
used for modelling the damage to partition walls in this study.

Note that the fragility function proposed by Porter and
Kiremidjian [38] was based on the experiments conducted by
Rihal [39]. This investigation was completed using 2.4 m x
2.4 m partition panels that were 16 mm thick and fixed onto
92 mm metal studs using screw fasteners. This may not fit
perfectly to the partitions that are likely to be found in
Christchurch but it was assumed that it would provide a close
enough fit. Typical partition walls in New Zealand are made
with gypsum boards, which come in a variety of heights (2 - 3
m) and thicknesses (10 - 20 mm). These gypsum boards are
fastened to steel or timber studs at 600 mm intervals. The
overall thickness of the wall is typically 120 mm. The two
damage levels investigated by Porter and Kiremidjian [38]
were stated to have the following repair properties: (i) the
partition requires taping and pasting of wall cracks (DL1), and
(ii) full damage of the partition wall requiring replacement
(DL2). Fitting the test results with lognormal distributions, the
fragility functions for the two damage levels were given. The
median drift (x,) and dispersion (B) corresponding to the
defined damage levels are presented in Table 4.

These two damage levels map reasonably well with two of the
damage levels required in this study (DL1 = DS1 and DL2 =
DS3). However, a third fragility curve is introduced in this
study for DS2. The moderate damage level is assumed to lie
between DL1 and DL2, and is assigned the median drift and
dispersion of 0.0058 and 0.19, respectively. With these values,
the three fragility functions used in this research are shown in
Figure 11. For clarity, the probabilities of failure
corresponding to these three damage states as per Equation 2
are also presented for a particular inter-storey drift ratio (IDR)
level. At IDR = 0.007, P; [= P(D4]IDR = 0.007)], P, [= P(D,|
IDR = 0.007)] and P; [= P(D3| IDR = 0.007)] are obtained as
0.12, 0.64, and 0.24, respectively.

Table 4: Fragility curve parameters (median drift ratio and

dispersion)
Damage level Xm B
DL1 0.0039 0.17
DL2 0.0085 0.23
09 f ---- Normal o
===~ Lognormal g
> 075 - Actual data g ,
= K-S statistic D,: [f’
§ 0.6 [ Normal = 0.1050; §
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2 045 ,
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Figure 11: Drywall partition fragility functions for different
damage states.

Table 5: Repair/replacement costs for different damage
states of partition wall

Average repair cost Standard deviation

Damage state

(NZ$/m?) (NZ$/m?)
DS1 26.6 6.99
DS2 61.8 6.27
DS3 115.9 21.07

Partition Repair Costs

In order to obtain the likely cost to repair the damage
mentioned in the previous section, a number of mediums were
investigated. This included consulting builders, partition
suppliers, construction companies and quantity surveying
guides such as Rawlinson’s construction handbook [34]. The
reluctance of suppliers and contractors to provide estimates for
a project leads to a small sample of costs. The data was
collected from 15 sources, which is assumed sufficient for this
study. The small data set is the reason for the reasonably high
standard deviations. The majority of this data was sourced
through discussions with builders. As it would be difficult for
suppliers and builders to provide accurate costs, a range was
accepted. These costs are applicable only to the Christchurch
area due to the economic environment. They are also subject

to change with variations in economic and industrial
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conditions. In this study, the cost data is fitted to a normal
distribution. The results of the repair cost data collections for
the three damage states mentioned earlier are presented in
Table 5.

Generic Expected Loss Function for Drywall Partition

Considering three damage states in Equation 1, expected
seismic loss for per square metre of drywall partition can be
expressed as,

L P xI

1 partition/ Dy + PZ XI

+ Py x|

partition/IDR = partition/D, partition/ Dy

(6)

where, Lpariionipr 1S the expected loss per square metre of
drywall partition; P;, P, and P; are the probabilities of
attaining DS1, DS2 and DS3, respectively, at a given IDR
level as shown in Figure 11; and | 0 and

partition/ D,
| partition/ b, repair/replacement
corresponding to the three damage states DS1, DS2 and DS3,
respectively.

partition/ Dy
are the cost of partition

To account for the propagation of different uncertainties, MC
simulations are carried out using MATLAB® to combine the
collected cost data with the fragility functions and to obtain a
range of expected loss per square metre of partition at different
drift levels. At each drift level, the probabilities of failure are
obtained using Equation 2. The repair/replacement cost
corresponding to each damage state is then randomly selected
from the idealized distribution of costs. Expected
repair/replacement cost is calculated repeatedly for 10,000 MC
simulations using Equation 6 at a given drift level. The
average expected repair/replacement cost per square metre of
partition is presented with respect to the IDR in Figure 12(a).

If needed, the costs shown in Figure 12(a) can be presented as
a percentage of the full replacement cost of the partition. Such
a relation may be more useful as the normalisation will make
it applicable to construction outside Christchurch as well. The
result of such a normalisation is shown in Figure 12(b).
However, as the collected data shows that the replacement cost
also has substantial uncertainty, using the mean replacement
cost will not propagate this uncertainty, and another MC
simulation will be needed to get normalized partition repair
cost with different confidence levels.

100

80 /
I
[<5)
Ty
ES o0
-5
-5 /
g8 40
5E /
& 20 /

0

0 0005 001 0015 002 0.025

Inter-storey drift ratio

(b)

Figure 12: (a) Repair cost per partition area vs. inter-storey drift; and (b) percentage of complete partition repair/replacement

cost.
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Figure 13: (a) Generalized expected loss for partitions; and (b) generalized and normalized (in terms of total building cost)
expected loss curves for partitions.

The aim of the envisaged generic loss function is to provide
the total likely partition loss in a building with a known floor
area (without having to measure the partition area). For this
purpose, the expected loss function is required to be modified
by using the partition ratio as given in Equation 7.

Ls(IDR) = Lpartition /ior* Rp xH @

where, Lp(IDR) is the expected loss due to partition damage
per square metre of floor area at a given drift level; and H is
the average partition wall height. As the height of the partition
(loosely equal to storey height) was found to vary little over
the building floors, this is considered as a deterministic
parameter in the calculation. The uncertainty propagation from
Lparitionior @nd Rp to the final expected loss due to partition
per square metre of floor is addressed using MC simulation.

In this study, Equations 6 and 7 are combined, and a single
MC simulation is conducted by treating the three damage state
repair/replacement costs and the partition ratio as primary
variables. At each drift level, 100,000 simulations are
conducted. Within each simulation, a random partition ratio is
generated using the distributions shown in Figure 10(b).
Random costs for the three different damage levels were also
established using a normal distribution and the costs input
from Table 5. The average partition wall height was
considered as 2.6 m based on the collected data. The
computed expected losses were averaged to obtain the final
expected loss due to partition damage per square metre of
floor area at the specified drift level, which is presented in
Figure 13(a).

It can be observed in Figure 13(a) that the loss due to partition
damage will increase with drift levels to a maximum of
NZ$68 per square metre of office floor area. This is likely to
be higher than normal due to the inevitable bias induced by the
recent hike in the construction and repair cost owing to the
demand surge in Canterbury region. To exclude this bias from
the expected loss function, and in order to provide a more
versatile representation of the expected loss, the curve can be
normalized to the construction cost of the building per square
metre of floor area. The results of such a normalization (taking
the variation in building cost into consideration) are shown in
Figure 13(b). It can now be seen that the likely loss due to
partition damage reaches a maximum of 3.4% of the total cost
of a building (approximately). This is a small but significant
contribution and the building clients should be acutely aware
of this fact.

Case Study

To confirm the accuracy and feasibility of the generic loss
functions developed for partition walls, three case study
buildings from the building drawing archive are examined.
Actual building plans are to determine the exact size of
partition walls in different floors in these buildings. The likely
partition losses are calculated separately for each floor using
inter-storey drifts estimated for different floors of these
buildings corresponding to different hazard levels.

First among the three case study buildings is the now-
demolished 96 Hereford Street in Christchurch. This was a 10
storey RC frame building built in 1987 and founded on
deep/soft soil as per geotechnical reports. It consisted of three
laterally resisting frames in one direction, and four laterally
resisting frames in the other direction. The direction of loading
for the analysis is assumed to be in the direction that gave the
greatest drift. The building’s first three floors were used as
retail space, therefore have not been included in the
calculation herein.

For comparison with the developed loss function prediction,
calculation of partition loss for a design level earthquake with
a 500 year return period is explained in detail here. For
calculating the inter-storey drifts, the building is represented
by a bare 2D frame. The storey forces are calculated by
distributing the design base shear as per the equivalent static
method stipulated in NZzS1170.5 [22]. To calculate the
displacements, the ideal rigid-beam shear stiffness of the
frame (i.e. number of columns x 12EI/H% is adjusted to
account for the beam flexibility. To adjust the stiffness, the
equivalent lateral stiffness for a one-storey frame is
determined based on the layout of the first floor of the
building. This assumes that the three-bay frame has five
degrees of freedom (neglecting the axial deformation of
members); out of which the four rotational degrees of freedom
are condensed to find an equivalent floor translational degree
of freedom. The equivalent shear stiffness of the frame is
found to be 65% of the ideal rigid-beam shear stiffness.

The following steps are used in calculating the drift between
different storeys (i.e. EDP for the partition walls in different
storeys).

(i) Seismic weights at all floor levels are calculated as per
New Zealand Standard [22] excluding the stairwells.

(ii) Effective storey shear stiffness of the laterally resisting
frame is estimated as explained above.
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(iii) The natural period of the fundamental mode is estimated
using Rayleigh’s method.

(iv) The design base shear for the estimated period is
calculated and distributed to the floors using the
equivalent static method. A ductility of 2 is used in the
calculation, which is in line with the ductility used in the
assessment of RC buildings designed in the 1980s in New
Zealand.

(v) Elastic storey drifts are calculated using the storey shear
forces and effective shear stiffness.

(vi) The inelastic drifts for all storeys are calculated using a
ductility factor of 2.

The natural period of this structure is estimated as 1.72 sec.
The estimated inter-storey drift ratios vary between 1.41% and
0.4%. Using the calculated inter-storey drift and the floor area
measured from the building plans, the approximate partition
loss in a given floor can be readily determined using the loss
function shown in Figure 13(a). Once this is repeated for all
floors, the total loss from partitions for the whole building can
then be obtained by adding the floor level losses. Thus, the
likely partition loss at a design level (i.e. 500 year return
period) seismic event as predicted using the proposed loss
function comes out to be about NZ$195,000 (refer to last
column of Table 6).

Table 6: Comparison between the calculated partition losses
for the 96 Hereford Street Building

Partition loss

. Loss
Area  IDR Partition Actua_l function
Floor 2 length calculation -
(m9) (%) (m) (NZ$) prediction
(NZ$)
10 540 0.40 134.9 4,917 4,361
9 540 0.67 114.6 18,589 19,421
8 540  0.92 114.9 28,336 29,562
7 540 113 133.6 38,239 34,280
6 540 132 113.2 33,619 35,576
5 540 147 147.2 44,164 35,904
4 540 141 85.1 25,488 35,880
Total 193,353 194,983

The next step to be completed is to calculate an expected loss
using the actual partition wall lengths. In order to do this, the
actual length of partition walls and partition wall heights
measured from the building plans are used along with the
calculated inter-storey drifts, partition fragility functions and
the mean repair costs for different damage states. Alternately,
the drift and partition area can be directly used to calculate the
actual expected loss due to partition damage using Figure 12
(i.e. the repair cost per square metre of partition vs. the inter-
storey drift). This is repeated for all floors throughout the
building to obtain the total loss. The partition losses calculated
by these two methods are compared in Table 6.

As can be seen from Table 6, total partition losses for the
building calculated from the two approaches differ by less
than 1%. The loss function slightly overestimates the expected
partition loss because the actual length of partition walls in
this building is marginally less than the average. However,
significant difference between the two predictions can be
observed in some floor level losses; this is mainly because the
partition lengths in these floors distinctly differ from the mean
partition ratio used in the loss function. For example, the 4"
floor loss varied by 29% due to the very small amount of
partition on that floor compared to the average of the data
collected. As expected, the cost of partition repair for the 96
Hereford Street building was more significant in the lower

floors where the drift is larger.

To further confirm the applicability of the loss function, the
method outlined above is applied for two more buildings
damaged in the Canterbury earthquakes and demolished.
These buildings are the previous Christchurch police station
building and the 254 Montreal Street building.

The police station building was a 15 storey reinforced concrete
structure, three levels of which were a podium about twice the
plan area of the tower above. Based on the limited information
of the foundation, the building was founded on sandy gravel
for a depth of about seven metres, and below that a layer of
about six metres of loose sand of medium density. The gravity
loads and lateral forces were resisted by ductile reinforced
concrete moment resisting frames. In the tower, the east-west
and north-south frames consisted of four bays and three bays
respectively [40]. A ductility factor of 2 is used for this
structure. The natural period of the structure is estimated as
1.96 sec. The estimated inter-storey drift ratios vary between
1.64% and 0.33%. Three stories are excluded from the
calculations due to non-office application. The 254 Montreal
Street building was a six storey building including a ground
floor. The upper five stories are considered in the study and a
ductility factor of 2 is assigned to the structure. The natural
period of the structure is estimated as 0.7 sec. The estimated
inter-storey drift ratios vary between 1% and 0.35%.

The comparison between the actual calculation and the loss
function prediction for the three case study buildings is shown
in Table 7. Note that for consistency, all calculations shown in
Table 7 are done without adjusting the rigid beam shear
stiffness of the frames; that is why the loss for 96 Hereford
Street is less than that shown in Table 6.

Table 7: Comparison between the predicted and the actual
loss assessment for the case study buildings

Partition loss (NZ$)

Difference
Actual Loss o
. A (%)
calculation function
96 Hereford Street 158,810 160,442 1.0
254 Montreal Street 63,939 64,010 0.1
Police Station 224,999 222,112 1.3

The percentage difference between the two predictions is
small enough (<2%) for all three case study buildings. The
average difference is 0.8%. The police station building has the
greatest cost due to the size of the building and higher
expected drift levels; as a result there is a relatively larger
difference between the loss function prediction and the actual
calculation. The method is then repeated for the three
buildings using different return period factors; i.e. for different
seismic intensity levels. The expected losses due to damage of
drywall partition per square metre of floor area obtained using
the developed generic loss function and detailed loss analyses
are presented in Table 8. The percentage difference between
the actual calculation using the measured partition lengths and
the generic loss function prediction is also shown in Table 8.

The police station building is expected to suffer a greater
damage per floor area because it is subject to higher drift
levels. The building at 254 Montreal Street undertakes small
drift at a return period factor of 0.5. Therefore, there is a low
normalized cost and large percentage difference. The small
percentage difference across the different buildings at different
hazard levels indicates that the proposed partition wall loss
function provides a tool for simple and quick estimation of
partition loss in RC office buildings. It should be noted that
the normalized loss is calculated with respect to the partition
repair and replacement costs in Christchurch, New Zealand
and may need to be adjusted for other countries.
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Table 8: Comparison of expected losses due to damage of drywall partition per square metre of floor area

Return period factor

(Annual probability of exceedance) Building

Normalised partition loss (NZ$)

- - Difference (%)
Actual calculation  Loss function

96 Hereford Street
254 Montreal Street

0.5 (1 in 100 year)
Police station

96 Hereford Street
254 Montreal Street

1 (1in 500 year)
Police station

96 Hereford Street
254 Montreal Street

1.3 (1 in 1000 year)
Police station

96 Hereford Street
254 Montreal Street

1.8 (1 in 2500 year)
Police station

11.9 12.0 0.9
2.2 2.0 8.8
14.8 144 2.8
420 425 1.0
231 23.1 0.1
447 441 13
51.2 51.6 0.8
35.0 351 0.2
52.3 51.8 1.0
58.7 59.0 0.5
49.7 494 0.5
58.8 58.3 1.0

CONCLUSIONS

Generalized loss functions for two important non-structural
components (NSCs), namely suspended ceilings and drywall
partitions, are developed herein. The existing methodologies
for floor level loss functions are extended in combination with
component distributions to develop generalized functions for
EDP vs. expected loss per square metre of floor area. The
developed expected loss functions facilitate quick estimation
of approximate seismic losses due to suspended ceilings and
drywall partitions without requiring any specific information
on the component amount/quantity and location within the
building.

Using the drawings of a 725 rooms from 29 different RC
office buildings in Christchurch CBD, a large data set of
suspended ceilings and drywall partition sizes (in relation to
the building floor area) was collected. In addition, builders and
manufacturers were consulted to collect data on the repair and
replacement costs of different levels of damage to these
components. A series of MC simulations are carried out using
the distributions of these collected data together with the
fragility functions available in literature to develop generalised
and normalized loss functions for these components. The
collected data and the generated normalized loss functions
suggest that the loss from suspended ceilings and partition
damage in RC office buildings could be up to 5.5% and 3.4%
of the total cost of the building, respectively. The usefulness
of the developed loss functions are compared with the
expected losses calculated using actual suspended ceiling
component distributions from five floors of a case study
building, and drywall partition from three case study
buildings. The differences between the loss function
predictions and the actual estimated losses are found to be
negligibly small for both components across all the case study
buildings subjected to different levels of seismic intensity.

The generic loss functions developed in this study provide a
useful tool for fast prediction of the seismic losses contributed
by suspended ceilings and drywall partitions without requiring
any information on the distribution of these components. Such
easy-to-use loss functions for all major components in a
building are required to facilitate estimation of seismic loss of
buildings for the future generation of performance based
seismic design guidelines, which may use seismic loss as a
key parameter for decision making
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