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ABSTRACT 

Post-disaster reconnaissance reports frequently list non-structural components (NSCs) as a major source of 

financial loss in earthquakes. Moreover, minimizing their damage is also of vital significance to the 

uninterrupted functionality of a building. For efficient decision making, it is important to be able to estimate 

the cost and downtime associated with the repair of the damage likely to be caused at different hazard levels 

used in seismic design. Generalized loss functions for two important NSCs commonly used in New 

Zealand, namely suspended ceilings and drywall partitions are developed in this study. The methodology to 

develop the loss functions, in the form of engineering demand parameter vs. expected loss due to the 

considered components, is based on the existing framework for the storey level loss estimation. 

Nevertheless, exhaustive construction/field data are employed to make these loss functions more generic. In 

order to estimate financial losses resulting from the failure of suspended ceilings, generalized ceiling 

fragility functions are developed and combined with the cost functions, which give the loss associated with 

typical ceilings at various peak acceleration demands. Similarly, probabilities of different damage states in 

drywall partitions are combined with their associated repair/replacement costs to find the cumulative 

distribution of the expected loss due to partitions at various drift levels, which is then normalized in terms 

of the total building cost. Efficiencies of the developed loss functions are investigated through detailed loss 

assessment of case study reinforced concrete (RC) buildings. It is observed that the difference between the 

expected losses for ceilings, predicted by the developed generic loss function, and the losses obtained from 

the detailed loss estimation method is within 5%. Similarly, the developed generic loss function for 

partitions is able to estimate the partition losses within 2% of that from the detailed loss assessment. The 

results confirm the accuracy of the proposed generic seismic loss functions. 

 

INTRODUCTION 

Non-structural components (NSCs) make up a considerable 

proportion of the total building cost [1], often outweighing the 

cost of structural components in most building uses. 

Moreover, performance of NSCs (and contents/services) is 

crucial for the continuous operation of the building. Even at 

small to moderate levels of ground shaking, where no 

noticeable structural damage occurs, damage to non-structural 

components (such as acoustic ceilings) and services can cause 

a substantial downtime resulting in a significant loss of 

income. Examples of damage caused to suspended ceilings 

and partition walls during past earthquakes are shown in 

Figures 1(a) and 1(b), respectively. Studies have shown that 

damage to non-structural components such as drywall 

partitions and acoustic ceilings (as well as generic 

components) comprise a significant proportion of the total loss 

in moderate earthquakes where no structural collapse occurs, 

and loss due to structural damage contributes little to the total 

loss [3]. The weeks-long closure of the modern BNZ building 

in Wellington, New Zealand, primarily due to ceiling damage 

during the Mw 6.5 Seddon earthquake on 16 August 2013 is a 

recent example. Recent earthquakes in New Zealand have 

directed the attention of engineers, policy makers and 

insurance companies toward NSCs and their significant 

contribution to the overall financial loss caused by such 

disasters, and significant progress has been made lately in 

understanding and improving seismic performance of NSCs 

[4]. 

  

 

Figure 1: (a) Collapsed suspended ceilings and (b) gypsum block partitions [2].
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Estimation of loss in buildings has been a topic of interest 

since the early 1930s. Freeman [5] in one of the earliest 

studies of loss estimation, provided rough estimates of 

probable average earthquake loss ratios for different localities 

and building types to be employed by insurance industry. 

Scholl [6] introduced a deterministic component-based loss 

estimation methodology to improve prediction of loss in high-

rise buildings. He defined damage to various structural and 

non-structural components as a percentage of component 

replacement cost. This damage was estimated using motion-

damage functions previously developed for high-rise 

buildings. Steinburgge [7] proposed a methodology that linked 

ground motion intensity to percentage loss for different classes 

of construction. Monte Carlo (MC) simulation was employed 

by Singhal and Kiremidjian [8] to account for various 

uncertainties including ground motion, estimation of damage 

and repair cost in predicting loss. Application of quantitative 

measures of ground shaking in estimation of loss was 

developed in 1997 through the introduction of HAZUS® to 

reduce the uncertainties associated with the seismic hazard [9]. 

Considering the enormous need of the present day, significant 

advancement has been made in the seismic loss estimation 

framework during the last decade [10-11]. Probabilistic loss 

estimation methodology for providing quantitative measures 

of seismic performance in terms of the economic losses are 

reported by several researchers [3, 12-15]. Loss disaggregation 

proposed in earlier studies provides a way to identify the 

ground motion intensities, levels of structural response and 

structural and non-structural components that primarily 

contribute to damage and direct economic losses. The results 

of the disaggregation of the economic losses estimated for a 

case study reinforced concrete (RC) building showed that the 

majority of economic losses are from NSCs. Recently, several 

research projects have been conducted on seismic loss 

estimation of buildings incorporating the effect of NSCs 

according to the FEMA P-58 [16] methodology. More 

recently, Cutfield et al. [17] used this methodology for life 

cycle analysis of base-isolated buildings. 

It is gradually being accepted in the earthquake engineering 

community that the current seismic design approach, which 

aims for serviceability in small earthquakes and life safety in 

moderate/large earthquakes is not enough to meet 

stakeholders’ expectation. In future versions of performance 

based seismic design, minimization of seismic losses from 

different sources (i.e., damage, downtime and injury) must be 

added as a key objective. A concept of a similar seismic 

design approach, called Loss Optimisation Seismic Design 

(LOSD) was discussed earlier by Dhakal [18]. For such a loss-

based seismic design approach, designers need to estimate the 

likely building loss associated with structural and non-

structural components (including damage repair and 

downtime) at ground motion intensities corresponding to 

different design limit states. 

Depending on the nature and extent of damage incurred, NSCs 

require different levels of repair ranging from minor repair to 

complete replacement, which are both costly and time 

consuming. The downtime associated with this kind of 

damage can impose a considerable financial burden on a 

property that is otherwise structurally sound. Therefore, it is 

advisable to consider non-structural damage in the early stages 

of decision making. The current state-of-the-art in terms of 

seismic loss estimation requires detailed component-based 

modelling and a series of probabilistic computations. 

Although some computer based tools, such as SLAT [19] and 

PACT [16] do exist, their use still requires significant expert 

knowledge, and is not hence conducive for everyday use by 

design engineers. Ramirez and Miranda [15] proposed to 

develop floor level generalized loss function for quick 

estimation of seismic loss for typical building categories. They 

combined the distributions of several components for a typical 

building category instead of actual quantities of the 

components to develop engineering demand parameter (EDP) 

vs. expected loss functions. After combining the expected loss 

of all the probable components at a floor level, generalized 

floor level loss functions were proposed. Later, Farokhnia and 

Porter [20] proposed a procedure for estimating the mean non-

structural vulnerability of a building category. The procedure 

takes structural properties, such as floor area and structural 

system, the quantity of the top five or so most cost intensive 

NSCs and the total non-structural construction cost of the 

building. However, the procedure is effectively applicable 

only when the detailed component inventory is available to the 

assessing engineer, which may not be feasible at the early 

design stage. Therefore, probabilistic generalized relationships 

for different structural and non-structural components need to 

be developed for estimating the expected losses at given EDP 

level. 

The primary aim of this work is to develop EDP vs. 

generalized expected loss functions for the suspended ceilings 

and drywall partitions used in typical RC office buildings in 

New Zealand. Herein, the loss functions are developed in line 

with the methodology proposed by Ramirez and Miranda [15]. 

However, the component distributions are generated using 

extensive data collected from various office buildings in 

Christchurch, New Zealand. Furthermore, the generalized loss 

functions are normalized in terms of the total building cost. 

The normalized generic seismic loss functions, developed 

herein for the suspended ceilings and drywall partitions, can 

readily be used to estimate likely losses due to these 

components at different levels of EDP in typical RC office 

buildings in New Zealand. Major objectives of this work are: 

(i) to generate component distributions of suspended ceilings 

and drywall partitions based on data collected from typical 

office buildings in Christchurch, New Zealand, and (ii) to use 

these component distributions along with the cost information 

in developing the generalized loss functions for rapid 

estimation of expected seismic losses contributed by the 

suspended ceilings and drywall partitions. 

METHODOLOGY 

For loss-based design, designers need to estimate likely losses 

from different building components at different limit states; so 

that the component losses can be assembled to estimate the 

total building loss and compared with tolerable loss limits. In 

probabilistic calculation, probable loss is contributed by the 

prospect of total building “collapse”, and the building not 

collapsing but sustaining different extent of “damage” to 

different components. As life safety and collapse prevention 

are the core aims of seismic design, the probability of building 

collapse at the limit states used in design is extremely low (if 

not nil), therefore can be justifiably ignored. The present day 

seismic loss estimation methodologies are primarily based on 

the framework developed at the Pacific Earthquake 

Engineering Research (PEER) centre and the details can be 

found elsewhere [10-12, 21]. Here, the relationships pertinent 

to the objectives of the present study are discussed. 

At a given limit state, the likely seismic loss from a 

component for a given building is the product of three 

quantities: (i) the likely engineering demand parametre (EDP) 

at the limit state, (ii) likely extent of damage at the limit state 

EDP and (iii) likely cost to repair the damage (or to replace 

the irreparably damaged component). The above statement 

only provides a simple conceptual representation of a complex 

probabilistic problem. If a deterministic relationship existed 

among the seismic intensity, EDP, damage and repair cost, the 

above statement could be readily used to calculate the 

component loss needed for loss-based decision making. 

Nevertheless, uncertainties invariably exist in all 
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interrelationships making the process more complex. Some 

EDPs take different forms depending on the component under 

consideration and the damage needs to be evaluated in terms 

of a number of discrete milestones.  

The most uncertain/vague among the three interrelationships is 

the first; i.e. between the EDP and the limit state. For this 

discussion, let us keep aside the unavoidable record-to-record 

randomness among different ground motions scaled to the 

same intensity corresponding to the limit state. Even for a 

single ground motion, the EDP (peak inter-storey drift ratio 

(IDR) or peak floor acceleration (PFA)) varies between 

different buildings and even for the same building between 

different floors/storeys. Hence, it is extremely difficult (if not 

impossible) to generalise the EDP-limit state relationship for 

non-structural components. Consequently, in this study 

generic loss functions are derived for a wide range of values of 

EDP. The functions can readily be applied for any 

combination of limit state and floor/storey hosting the 

component. However, note that the corresponding EDP will 

have to be assessed separately beforehand through structural 

analysis. Herein, the expected EDPs are computed based on 

the simplified procedure stipulated in the New Zealand 

Standard [22]. However, more refined approaches (e.g. [23-

24]) can be followed, or detailed non-linear dynamic analysis 

can be performed to obtain the EDPs for the considered 

building at a given site. 

Moreover, the repair/replacement costs of most non-structural 

components are quoted per unit area/number. Hence, the 

derived cost will have to be multiplied by the total 

area/number of the component in the floor/storey of the 

building under consideration. Despite the scope of the 

functions developed here being limited to RC buildings used 

as offices, the density of non-structural components such as 

ceilings and partitions can vary widely in such buildings. To 

account for this variation and the inherent uncertainties in 

other relationships, ideally a series of integrations using 

probabilistic interrelationships between different variables, 

such as those used in seismic risk assessment methodologies 

[14], should be conducted. Although in this study, 

deterministic calculations are used to develop the loss 

functions, the uncertainties are accounted for, and propagated 

through to the final step using MC simulation by coding a 

program in MATLAB®. 

To generate the input values for MC simulation, the variations 

need to be quantified in advance are: (i) variation of the 

component amount per square metre of building plan, (ii) 

variation of damage for a given EDP, and (iii) variation of the 

repair costs for different damage categories. The second 

variation comes from the fragility functions, which are well 

researched, and can be found in literature for most of the 

components. For quantifying the other two variations, two sets 

of data were collected for each component, i.e. suspended 

ceilings and drywall partitions. These data sets include: (i) 

distribution of these two components in typical RC office 

buildings, and (ii) costs required to repair different categories 

of damage to these components. These data were statistically 

fitted to suitable probability distributions. The input 

parameters for the MC simulations were generated randomly 

based on the assigned probability distribution functions. 

Expected loss due to a component at a floor level for a given 

value of EDP (Lc/EDP) can be calculated deterministically as 

[2, 15], 
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where, θi and βi are the median and logarithmic standard 

deviation of the capacity to resist its ith damage state, 

respectively; and Φ() is the standard normal cumulative 

distribution function. 

For a given EDP, this calculation is repeated with different 

randomly generated values of the inputs. The losses calculated 

from the large number of MC simulations are then interpreted 

probabilistically to obtain the mean and standard deviation. 

This process is repeated for different values of EDP; and 

finally the expected component loss (mean as well as the 

upper and lower bound) functions are generated in the form of 

loss vs. EDP plots. In order to test and confirm the accuracy 

and feasibility of the proposed loss functions, data obtained 

from some existing buildings are used as case studies. 

Component distribution data is collected from RC office 

buildings located primarily within Christchurch Central 

Business District (CBD). Note that the distributions of NSCs 

(ceilings, partitions, etc.) obviously depend on the room sizes, 

which are primarily influenced by the use of the buildings. 

Hence, the outcome of this work may not strictly apply to 

buildings used for other purposes, which require distinctly 

different room sizes. Although the component distribution data 

was taken from buildings in Christchurch, they should be 

representative of similar buildings throughout New Zealand, 

as the practice within the country does not vary widely. It is 

assumed that enough data samples were collected to capture 

the variability/uncertainty. The cost data were taken from 

different sources (builders, contractors, suppliers and 

manufacturers) serving the whole country; so there should not 

be any bias induced by the temporary demand surge in 

Christchurch following the recent Canterbury earthquakes. 

The following two sections describe the data collections for 

component distribution generation, development of 

normalized generic loss functions and case studies for 

suspended ceiling and drywall partitions, respectively. 
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Figure 2: Schematic diagram and details of suspended ceiling. 

SECTION I: SUSPENDED CEILINGS 

Suspended ceilings are non-structural or architectural 

components that serve various purposes in a building. They 

provide a clean, pleasant overhead finish surface that hides 

services, pipes, ductwork etc. They are also effective in sound 

absorption and fire protection besides adding aesthetic 

character to the space. Suspended ceilings used in New 

Zealand typically consist of inverted T-shaped galvanized 

steel beams that form 1200 mm × 600 mm or 600 mm × 600 

mm modules to support ceiling panels (Figure 2). The 

suspension system is supported by the structure above via 

either vertical steel hanger wires or braces. On the perimetres, 

the ceiling is either fixed to the structure via rivets and clips or 

free to slide on perimetre angles. These ceilings are very 

common in commercial buildings and they suffered extensive 

damage during the 2010 - 2011 Canterbury earthquakes [26-

28]. Damage to the ceilings can be the result of components 

reaching their load carrying capacity. For example, end-fixing 

rivets can yield in shear or can be pulled out due to large axial 

force, and grid connections can break under tension. This 

damage is the result of the inertial force induced in grid 

members by the floor acceleration. 

Distribution of Suspended Ceilings in Office Areas 

Ceiling size refers to the total area of the ceiling continually 

connected through grid elements. Therefore, the assumption 

can be made that the ceiling size is equal to the size of the 

room. This assumption implies that the distribution of room 

sizes provides the distribution of ceiling sizes. However, for 

rooms of significantly large dimension, the ceiling systems 

were found to be bounded and separated by structural 

components, such as intermediate beams. In that case, the 

ceiling area was considered equal to the smallest area enclosed 

by structural members. For this purpose, both architectural and 

structural drawings of a large number of Christchurch 

buildings damaged in the 2010-2011 Canterbury earthquakes 

were accessed. A library of drawings corresponding to 725 

rooms from 29 different office buildings located in 

Christchurch CBD was collected. The number of stories in the 

buildings under consideration varied from 1 to 13. 

Nevertheless, detail drawings corresponding to all floor levels 

of a building and all rooms at a particular floor level were not 

available. Therefore, no discriminations were made in the 

collected data regarding the floor level or number of stories in 

the building. Only clearly distinguishable floor areas were 

measured, and ratios between the long side and shorter side 

(room aspect ratio) were noted. In total, 606 data 

corresponding to the ceiling area and 542 data corresponding 

to the room aspect ratio were recovered for the present study. 

The difference between the sizes of these two datasets 

represents the number of rooms subdivided by intermediate 

beams resulting in multiple ceiling areas for a single room. 

The histogram and the cumulative probability distribution of 

the observed ceiling areas are presented in Figures 3(a) and 

3(b), respectively. Two theoretical cumulative distribution 

functions (CDFs), normal and lognormal, are also presented in 

Figure 3(b). The observed data are fitted with normal 

distributions (mean = 34.92 m2, standard deviation = 19.82 

m2) and lognormal distributions (median = 30 m2, logarithmic 

standard deviation = 0.57 m2). To compare the appropriateness 

of the theoretical distribution functions, two different 

goodness-of-fit (GOF), Chi square (χ2) and Kolmogorov-

Smirnov (K-S) tests are carried out. The χ2 statistics (p value) 

and K-S statistic (Dn,max) are reported in the figure for 

comparison. Lognormal distribution is found to fit better to the 

observed ceiling areas. 

It is observed from Figure 3 that only about 25% of the rooms 

have an area of less than 20 m2. The relatively large proportion 

of bigger rooms in this distribution is due to the fact that it is 

common in New Zealand to have large halls divided into staff 

compartments using half-height board partitions where the 

ceilings span over the whole length of the hall. It is noted that 

majority of the rooms in buildings are rectangular; hence, the 

ceiling grid members spanning along the longer dimension of 

the room are subjected to greater forces, and the longer side of 

the ceiling is the critical direction if a ceiling is subjected to 

similar accelerations in both directions. Consequently, in 

addition to the distribution of ceilings area, distribution of the 

longer side length of ceilings is also required. For this purpose, 

aspect ratios of the studied rooms were also measured. It is 

assumed in this study that the room aspect ratio represents the 

ceiling aspect ratio. The histogram and the cumulative 

probability distribution of the observed room aspect ratios are 

presented in Figures 4(a) and 4(b), respectively. Two 

theoretical CDFs, normal and lognormal, are also presented in 

Figure 4(b). From the GOF tests it is observed that the room 

aspect ratios are better represented by the lognormal 

distribution (median = 1.38 and logarithmic standard deviation 

= 0.204) as compared to the normal distribution (mean = 1.44 

and standard deviation = 0.307).  

Having the ceiling area (A) and the room aspect ratio (r), the 

longer side (LL) length is obtained as, 

rALL    (3) 

float 

(Braced) 
(Armstrong [25]) 

fixed float 

(Perimeter-fixed) 
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Figure 3: (a) Histogram of collected data; and (b) fitted cumulative distribution functions for ceiling a reas. 

  

Figure 4: (a) Histogram of collected data; and (b) fitted cumulative distribution functions for ceiling aspect ratios. 

Since the area and the aspect ratio in this equation follow a 

probabilistic distribution, MC simulation is used to combine 

these two distributions and to generate the distribution of the 

longer side length of ceiling. The resulting cumulative 

distribution (average corresponding to the 10,000 simulations) 

of the longer side of ceilings is presented in Figure 5. 

 

Figure 5: Cumulative probability distribution of longer side 

length of ceilings. 

Development of Generalized Loss Function for Suspended 

Ceilings 

Generalized Fragility Function for Typical Ceiling Systems 

This section aims to develop a generic fragility function which 

provides the probability of failure in a suspended ceiling at 

any given floor acceleration and for any given ceiling size. For 

the purpose of this study, the relationship between the peak 

accelerations at the floor level and ceiling level has not been 

taken into account. Therefore, the acceleration used while 

developing the fragility curves is assumed to be the peak 

acceleration applied on the ceiling grids and connections. The 

values of acceleration applied on the ceiling system can be up 

to two times higher than the PFA depending on the period of 

the ceiling system [22]. By combining the distribution of 

longer side length of the ceiling with the benchmark fragility 

function for a standard length, generalized fragility functions 

for any ceiling size can be generated. The following 

paragraphs describe the details of this process. 

Paganotti et al. [29] tested a large number of grid members 

and connections of a typical suspended ceiling system. Based 

on the component test results, they developed fragility 

functions for ceilings with different sizes in the longitudinal 

direction. The fragility curve produced in their study was 

based on the 2.4 mm rivet (i.e. rivet having 2.4 mm diametre) 

connections between the perimetre angle and the grid 
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members. The ceiling measured 12 m in the longer direction, 

and its unit weight was approximately 10.5 kg/m2. Since many 

suspended ceilings in New Zealand currently use 3.2 mm 

rivets, a fragility curve is developed for a suspended ceiling 

category of the same unit weight and length, however with 3.2 

mm rivet for the perimetre connection. Table 1 shows the 

shear capacity of different rivet sizes. A third fragility curve is 

developed for a ceiling category with 3.2 mm rivets but lighter 

unit weight. The total unit weight of the third ceiling is 

assumed as 6.5 kg/m2. These additional two curves are 

produced based on the fragility curves of most critical ceiling 

components [30]. Figure 6(a) shows these three fragility 

curves corresponding to different rivet sizes and unit weights. 

Table 2 shows the values of median and standard deviation of 

the acceleration capacity corresponding to the three ceilings 

evaluated here. 

Table 1: Shear and tensile strength of aluminium rivets [31] 

Diameter Shear strength (kN) Tensile strength (kN) 

2.4 mm or 3/3" 0.400 0.534 

3.2 mm or 1/8" 0.756 0.979 

Table 2: Values of median and standard deviation for 

ceilings 

Weight 

(kg/m2) 

Rivet size 

(mm) 

Median 

(g) 

Standard deviation 

(g) 

10.50 2.4 0.52 0.235 

10.50 3.2 1.00 0.120 

6.50 3.2 1.63 0.195 

The seismic force in ceiling components is directly related to 

the seismic weight applied on it. Therefore, the maximum 

seismic force induced in a ceiling can be assumed directly 

proportional to the length of the ceiling or the length of grid 

member [30]. In other words, the floor acceleration a ceiling 

can sustain decreases linearly with the ceiling length. 

Consequently, knowing the failure probability of the 12 m 

long ceiling at a given acceleration, the failure probability of 

ceilings of different lengths at the same acceleration can be 

computed. Generalising this interrelationship, the converted 

acceleration capacity (aL) of ceilings with a longer side length 

of L, can be obtained as, 

12

12
a

L
aL   (4) 

where, a12 is the acceleration capacity of a 12 m long ceiling 

system. 

Once again, as the longer dimension of ceilings follows a 

statistical distribution, MC simulation is performed to obtain 

the distribution of the converted accelerations. For a given 

acceleration (say 0.1g), a random value of the longer side 

length is generated conforming to the previously defined 

distribution (Figure 5). The acceleration (i.e. 0.1g) 

corresponding to the generated length is then converted to a 12 

m ceiling length using Equation 4. The probability of failure 

corresponding to the converted acceleration is obtained for 

each ceiling type using the benchmark fragility curves (i.e. 

Figure 6(a)) developed for a 12 m ceiling length. This failure 

probability is taken as the probability of failure of a ceiling of 

the generated length when subjected to the given acceleration 

(i.e. 0.1g). The procedure is then repeated for multiple length 

realizations. The mean failure probability of the ceiling type 

(independent of the length) subjected to the original floor 

acceleration (i.e. 0.1g) is then obtained by taking the average 

value of the calculated failure probabilities. The procedure is 

repeated for various accelerations, and the resulting generic 

mean fragility functions of ceiling systems independent of the 

size can be generated as shown in Figure 6(b).  

Figure 6(b) indicates that the probability of ceiling failure 

becomes immediately significant at near-zero accelerations for 

the 10.5 kg/m2 ceiling with 2.4 mm rivets; this is partly a by-

product of the probabilistic derivation process and partly due 

to the vulnerability of large sized ceilings even at small 

accelerations. It is noted that only one damage state (termed as 

failure) is used in the ceiling fragility. Failure of ceilings in 

this context refers to the state where the ceiling grids 

supporting the tiles fail at one point, which triggers successive 

falling of the ceiling tiles. At this damage state, it is 

economically and technically not efficient to repair the 

ceilings, consequently replacement of the ceilings is an 

obvious choice. It is worth mentioning that other damage 

states corresponding to the falling of some tiles without 

damaging the grid members are not considered in this study. 

This is justifiable as the repair costs corresponding to these 

damage states are insignificant as compared to the replacement 

of complete grid. Although, the repair cost is negligible 

corresponding to these damage states, dislodgement of few 

tiles and/or minor damage to the grid members (not complete 

failure) are not rare, particularly at the lower levels of 

acceleration. Therefore, other limit states as defined by 

Badillo-Almaraz et al. [32] and other researchers can be 

considered in the calculation when more refined seismic loss 

estimation is necessary. 

  

Figure 6: (a) Fragility curve for 12 m long suspended ceilings; (b) generalized fragility functions of typical suspended ceilings. 

0

0.2

0.4

0.6

0.8

1

0 0.55 1.1 1.65 2.2

P
ro

b
ab

il
it

y
 o

f 
fa

il
u

re
 

Acceleration (g) 

6
.5

 k
g
/m

2
 -

 3
.2

 R
iv

et
 

1
0

.5
 k

g
/m

2
 -

 2
.4

 R
iv

et
 

1
0

.5
 k

g
/m

2
 -

 3
.2

 R
iv

et
 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

P
ro

b
ab

il
it

y
 o

f 
fa

il
u

re
 

Acceleration (g) 

1
0

.5
 k

g
/m

2
 -

 2
.4

 R
iv

et
 

6
.5

 k
g
/m

2
 -

 3
.2

 R
iv

et
 

a b 



70 

Replacement Cost for Suspended Ceilings 

To derive a generic loss function, which indicates the likely 

replacement cost of typical ceiling systems subjected to a 

given acceleration, information on the replacement cost of 

various types of ceilings with different configurations was 

collected. The information on the replacement cost of the 

ceilings was obtained from local builders, some of the ceiling 

suppliers in New Zealand (ArmstrongTM [25] and USG 

BoralTM [33]), from employees of construction companies, and 

the price range in Rawlinson’s construction handbook [34]. 

Information received from more than 15 sources, including 

internet listing and random construction workers, were 

considered. The relatively small sample size is assumed 

sufficient for this study. The collected data was fitted to a 

normal distribution. The mean and standard deviation of the 

replacement cost per square metre of suspended ceilings were 

amounted to NZ$93.5 and NZ$5.83, respectively. 

Generic Expected Loss Function for Typical Ceilings 

As the generic fragility distinguishes between only “collapse” 

and “no collapse” without considering any other intermediate 

damage states (for the reasons explained earlier), the financial 

loss comes from the probability of damage requiring the 

compete ceiling system to be replaced. Considering only one 

damage state, Equation 1 can be rewritten for per square metre 

of ceiling as, 

  ceilingPFAceiling lPFAFPL  |/
 (5) 

where, Lceiling/PFA is the expected loss per square metre of 

ceiling; P(F|PFA) is the probability of ceiling failure under a 

given peak floor acceleration (PFA), which can be obtained 

from the generic fragility functions shown in Figure 6(b); and 

lceiling is the cost of ceiling replacement. It is worthy to mention 

that the actual acceleration at the ceiling level, instead of PFA, 

needs to be evaluated for accurate estimation of the ceiling 

loss. 

Combining the distributions of the collected data on the 

replacement cost and the generic ceiling fragility functions 

(Figure 6(b)), 10,000 MC simulations are performed using 

Equation 5 to generate a large number of values of the 

expected loss per square metre of ceilings for a chosen value 

of PFA. The process is repeated for different PFA values. The 

resulting average expected loss due to damage to the ceilings 

at various acceleration levels is shown in Figure 7(a). The 

estimated loss shown in this figure is independent of the room 

size and longer side length of ceilings, therefore can be used 

for various applications. However, the expected loss shown in 

this graph is obtained based on the data collected in New 

Zealand and Christchurch in particular. Therefore, it may not 

be directly applicable for other locations due to variation of 

prices in different places.  

In order to be able to generalize the model, the expected loss 

can be normalized with respect to the total cost of office 

buildings per square metre of floor area. By collecting 

building cost (range) from several building practitioners, and 

analysing the collected data, the mean and standard deviation 

of total building construction cost per square metre of floor 

area were estimated as NZ$2034 and NZ$213, respectively. It 

is noted that the data used to obtain this result is from the 

construction cost of office buildings in Christchurch CBD. 

The majority of the buildings in this research are low to 

medium-rise buildings. It is likely that the variation of the 

building construction cost data might have been wider if a 

greater variety of building height was considered in the data 

collection. 

Since the total construction cost of buildings is uncertain, and 

follows a distribution (fitted to a normal distribution in this 

study), MC simulation was performed to normalize the 

expected ceilings loss with respect to the total building cost. 

The resulting normalized expected loss corresponding to 

typical ceiling systems with respect to the acceleration is 

shown in Figure 7(b). The normalized expected loss represents 

the ratio between the expected cost of replacing damaged 

ceilings and the total building cost. Knowing the acceleration 

induced at each storey level, this curve enables a fast 

prediction of the expected loss due to ceilings regardless of 

their size, and without requiring any information regarding the 

fragility of ceilings. As can be seen in the figure, the expected 

loss due to ceilings is around 4.5% of the total building cost at 

large accelerations for which the failure probability is 

significantly high. At an acceleration of 1g, the minimal 

improvement of grid fixture from 2.4 mm rivet to 3.2 mm rivet 

reduces the loss ratio from 3% to 0.3%. Similarly, using 

lighter ceiling tiles is effective in reducing the overall 

expected loss due to ceiling failure. 

  

(a) (b) 

Figure 7: (a) Generalized expected loss curves of typical ceilings; (b) generalized and normalized (in terms of total building cost) 

expected loss curves of typical ceilings.
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Case Study 

To examine the accuracy of the generic loss function 

developed in the previous section, the expected loss attributed 

by the ceiling replacement cost of a case study building is 

computed through a rigorous approach, and compared with the 

same obtained using the developed generic loss function. For 

this case study, the loss data associated with only one of the 

three variations of ceilings, i.e. the ceiling with 2.4 mm rivet 

connections are used. The case study building is the 

engineering building of the University of Canterbury, 

Christchurch. This is a five storey RC building and each floor 

is used for different purpose. The first and second floors 

accommodate several lecture rooms, self-study rooms and a 

large computer laboratory room for undergraduate students. 

Similarly, postgraduate research rooms and a large drafting 

room are located on the 3rd floor, and the top two floors of the 

building are used as offices for the academic staff. The floor 

area at each storey level is approximately 1680 m2. 

Since the detailed architectural and structural drawings for the 

case study building were available, a detailed and reasonably 

accurate estimation of the expected loss due to the failure of 

the ceilings with respect to the total cost of the building is 

carried out. As the ceilings’ area and longer dimension are 

known precisely, the uncertainty due to these variables is 

omitted in the estimation. Hence, the ceiling cost is the only 

uncertain parametre in this calculation. The first step in the 

assessment of loss is prediction of engineering demand 

parametres, i.e. peak floor accelerations in this case. To 

estimate the peak floor acceleration at each storey level, the 

method stipulated in New Zealand Standard [22] is utilized. 

Note that, here the peak accelerations at the ceiling levels are 

assumed to be same as PFAs for simplicity, however in 

practice it can be significantly higher than the PFA. 

The following steps are performed to assess the expected loss 

due to failure of the ceilings for the case study building. 

(i) For the given floor level and limit state under 

consideration, calculate the floor acceleration demand 

using the NZS1170.5 [22] approach. The accelerations 

at the ceiling level need to be considered for a more 

accurate estimate. 

(ii) Create a database of dimensions of all rooms in all 

floors of the building. 

(iii) Group the rooms according to their longer dimension; 

put rooms with lengths within a predefined interval in 

the same category. 

(iv) Calculate the mean value of the longer dimension (i.e. 

length) of each group. 

(v) For the mean value of longer dimension, calculate the 

acceleration capacity of the ceilings using Equation 4 

and generate the fragility curve/function (by converting 

Figure 6(a)). 

(vi) Estimate the failure probability of each group of ceiling 

using the fragility function. 

(vii) Within each group, sub-group the rooms according to 

their shorter side lengths (close to each other within a 

predefined interval). 

(viii) Count the number of rooms in all sub-groups. 

(ix) Using the mean value of the longer and shorter 

dimensions, calculate the mean area for all sub-groups. 

(x) For all sub-groups, multiply the failure probability by 

the mean ceiling area, number of rooms and mean 

ceiling replacement cost per unit area to obtain the 

expected ceilings loss. 

(xi) Obtain the total ceiling replacement cost for the floor by 

adding the calculated losses from all groups/sub-groups 

of ceilings. 

(xii) Divide the total cost by the total area of the ceilings in 

the floor to obtain the average expected ceiling loss per 

square metre. 

The above steps were repeated for all five floors in the 

building. Note that the New Zealand Standard [22] requires 

suspended ceilings in normal buildings to be designed for the 

serviceability limit state (SLS). The natural period of the case 

study building is computed to be about 0.6 sec. The peak floor 

accelerations corresponding to the serviceability level 

earthquake (25 year return period) are calculated as 0.32g, 

0.43g, 0.53g, 0.64g and 0.64g, at the 1st, 2nd, 3rd, 4th and 5th 

floor level, respectively. The peak floor accelerations at other 

seismic intensity levels can be computed as per the standard 

procedure explained in NZS1170.5 [22]. As an example, the 

estimated values at each step are shown in Table 3 for the 4th 

floor of the case study building for the SLS. As can be seen 

from the table, the expected loss associated with ceilings is 

estimated as NZ$29 per square metre area of the floor. 

Alternatively, ceiling losses can also be estimated using the 

loss function developed herein at the acceleration level 

corresponding to the required hazard level. Figure 8 shows a 

comparison between the expected ceiling losses estimated 

using the generic loss function and those obtained by the 

detailed loss assessment for the case study building for six 

different return periods. Rather than showing the mean value 

of the ceiling loss predicted by the loss function, a range of 

values between the 5% to 95% confidence intervals are 

highlighted. 

It is evident from Figure 8 that ceiling losses in the case study 

building fall within the 90% confidence interval of the 

approximate method (i.e. using the generic expected loss 

function) for all cases except a couple of floors at 25 and 50 

year return periods. For most floors of the case study building, 

the detailed loss assessment generally results in lower ceiling 

losses than the median loss given by the generic loss function 

(slightly conservative). For return periods of 25 and 50 years, 

the exact ceiling loss in the 3rd floor is higher than that given 

by the loss function developed in the paper. This difference for 

the third floor is probably due to the presence of large amount 

of open spaces (the drawing room), which has a 

disproportionately long ceiling compared to the median value 

of longer dimension of the rooms. However, the close 

agreement between the average losses given by the loss 

function with the calculated loss for the case study building in 

general suggests that the proposed function can be relied on as 

a quick and simple tool to estimate expected seismic loss 

resulting from damage to suspended ceilings under different 

floor accelerations. 
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Table 3: Expected loss due to ceiling for 4th floor of engineering building 

Longer 

side (m) 

Average 

length (m) 

Failure 

probability 

Shorter 

side (m) 

No. of 

rooms 

Average 

area (m2) 

Total 

area (m2) 

Loss 

(NZ$) 

2 to 4 3 0.087 
1.5 to 2 7 5.25 36.75 299 

2 to 3 40 7.5 300 2,440 

5 to 6 5.5 0.184 

2 to 3 0 0 0 0 

3 to 4 0 0 0 0 

4 to 5 24 24.75 594 10,217 
5 to 6 0 0 0 0 

10 to 11 10.5 0.503 

2 to 3 0 0 0 0 

3 to 5 0 0 0 0 
5 to 6 13 57.75 750.75 35,272 

6 to 7 0 0 0 0 
7 to 11 0 0 0 $0 

Total 1681.5 48,227 

Expected loss (rounded off) 29 (NZ$/m2) 

 

Figure 8: Comparison of calculated expected losses due to ceilings for case study building with the generic expected loss function 

predictions. 

 

Figure 9: Typical timber-framed partition wall [35]. 

SECTION II: PARTITION WALLS 

A partition wall is a non-structural component located within 

structural frames of a building in order to separate rooms. The 

most common partition wall types used in New Zealand are 

timber framed or steel framed partitions sheathed with drywall 

boards (Figure 9). Despite their significance, building codes 

do not have specific guidelines that help to reduce the damage 

of partition walls and their contribution to the seismic loss of 

buildings. For the drywall partition construction, 

manufacturers’ specifications are normally used to meet the 

standard for the finishing of gypsum linings [36]. Behaviour 

of drywall partitions subjected to shear loading was previously 

studied by Lee et al. [37], where the relationship between the 

inter-storey drift and damage to drywall partitions was 

developed under quasi-static cyclic loading conditions. 

Partition walls have proven to be influenced even by small 

drift levels; and as a result, suffer severe damage. 

Distribution of Partition Walls in Office Buildings 

In order to establish the distribution of partition walls in office 

buildings, the total length of partition walls and the floor area 

were collected from several office buildings in Christchurch. 

For this purpose, drawings of a large number of Christchurch 

buildings damaged in the 2010-2011 Canterbury earthquakes 

were accessed. However, the partition layout is not usually 

decided until later in the design and construction process. 

Hence, most of the drawings in the archive did not include 

final architectural plans, and those which did, had insufficient 

information for the layout of partition walls; thereby making 

this phase more difficult than anticipated. Although a library 

of drawings corresponding to 725 rooms from 29 different 

office buildings located in Christchurch CBD were searched, a 

data set of 98 office floors could be collected that contained 

sufficient information about the partitions. The length of 

partition walls was established by measuring the length 

individually for each floor. The height, width, material used 

and number of door openings for the partitions were also 

recorded at this stage. These were then used to calculate the 

expected ratio of the partition wall length to the floor area for 

a typical office building in Christchurch, which is expected to 

represent the trend in New Zealand. The number of data is 
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assumed sufficient to represent the distribution of the partition 

ratio (R = length of partition / floor area) for typical office 

buildings in New Zealand. Floor wise distributions of the 

partitions were not considered. The assumptions made during 

the data collection were: 

(i) Doors act as partitions and were included in the overall 

length of partition wall.  

(ii) Elevator shafts and staircases were considered to be 

structural component and not included in the calculation.  

(iii) Non-office related floors were ignored. 

(iv) If not explicitly stated, floor areas were assumed to be 

consistent throughout a building. 

The histogram and the cumulative probability distribution of 

the observed partition ratios are presented in Figures 10(a) and 

10(b), respectively. Two theoretical CDFs, normal and 

lognormal, are also presented in Figure 10(b). The observed 

data are fitted with normal distributions (mean = 0.23 m/m2, 

standard deviation = 0.058 m/m2) and lognormal distributions 

(median = 0.22 m/m2, logarithmic standard deviation = 0.293 

m/m2). Based on the GOF tests, it is concluded that the normal 

distribution gives a better representation of the partition ratios. 

Development of Generalized Loss Function for Partitions 

Damage States and Fragility Functions for Partition Walls 

The cost of repair/replacement for a partition wall can be 

different based on the extent of the damage incurred. Hence, 

to facilitate loss estimation, damage states should have 

reasonable correlation with available repair 

methodology/technology. In this study, the following three 

damage levels are used to describe the damage to partition 

walls. 

(i) Minor visible damage (DS1): cracking of the paint and/or 

drywall requiring taping and/or putty then painting. 

(ii) Moderate damage (DS2): broken drywall panel requiring 

replacement of the drywall panel but not the frame. 

(iii) Full replacement (DS3): damage to the panels and frame 

requiring full replacement of the partition wall system. 

It has extensively been shown that damage in partition walls 

can be attributed to the inter-storey drift experienced by the 

storey accommodating the partition wall. Porter and 

Kiremidjian [38] developed fragility functions for a number of 

different non-structural components of a building. The 

partition wall fragility function established in their study is 

used for modelling the damage to partition walls in this study. 

Note that the fragility function proposed by Porter and 

Kiremidjian [38] was based on the experiments conducted by 

Rihal [39]. This investigation was completed using 2.4 m × 

2.4 m partition panels that were 16 mm thick and fixed onto 

92 mm metal studs using screw fasteners. This may not fit 

perfectly to the partitions that are likely to be found in 

Christchurch but it was assumed that it would provide a close 

enough fit. Typical partition walls in New Zealand are made 

with gypsum boards, which come in a variety of heights (2 - 3 

m) and thicknesses (10 - 20 mm). These gypsum boards are 

fastened to steel or timber studs at 600 mm intervals. The 

overall thickness of the wall is typically 120 mm. The two 

damage levels investigated by Porter and Kiremidjian [38] 

were stated to have the following repair properties: (i) the 

partition requires taping and pasting of wall cracks (DL1), and 

(ii) full damage of the partition wall requiring replacement 

(DL2). Fitting the test results with lognormal distributions, the 

fragility functions for the two damage levels were given. The 

median drift (xm) and dispersion (β) corresponding to the 

defined damage levels are presented in Table 4. 

These two damage levels map reasonably well with two of the 

damage levels required in this study (DL1 ≈ DS1 and DL2 ≈ 

DS3). However, a third fragility curve is introduced in this 

study for DS2. The moderate damage level is assumed to lie 

between DL1 and DL2, and is assigned the median drift and 

dispersion of 0.0058 and 0.19, respectively. With these values, 

the three fragility functions used in this research are shown in 

Figure 11. For clarity, the probabilities of failure 

corresponding to these three damage states as per Equation 2 

are also presented for a particular inter-storey drift ratio (IDR) 

level. At IDR = 0.007, P1 [= P(D1|IDR = 0.007)], P2 [= P(D2| 

IDR = 0.007)] and P3 [= P(D3| IDR = 0.007)] are obtained as 

0.12, 0.64, and 0.24, respectively. 

Table 4: Fragility curve parameters (median drift ratio and 

dispersion) 

Damage level xm β 

DL1 0.0039 0.17 

DL2 0.0085 0.23 

  

(a) (b) 

Figure 10: (a) Histogram of the collected data; and (b) fitted cumulative distribution functions for partition ratio. 
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Figure 11: Drywall partition fragility functions for different 

damage states. 

Table 5: Repair/replacement costs for different damage 

states of partition wall 

Damage state 
Average repair cost 

(NZ$/m2) 

Standard deviation 

(NZ$/m2) 

DS1 26.6 6.99 

DS2 61.8 6.27 

DS3 115.9 21.07 

Partition Repair Costs 

In order to obtain the likely cost to repair the damage 

mentioned in the previous section, a number of mediums were 

investigated. This included consulting builders, partition 

suppliers, construction companies and quantity surveying 

guides such as Rawlinson’s construction handbook [34]. The 

reluctance of suppliers and contractors to provide estimates for 

a project leads to a small sample of costs. The data was 

collected from 15 sources, which is assumed sufficient for this 

study. The small data set is the reason for the reasonably high 

standard deviations. The majority of this data was sourced 

through discussions with builders. As it would be difficult for 

suppliers and builders to provide accurate costs, a range was 

accepted. These costs are applicable only to the Christchurch 

area due to the economic environment. They are also subject 

to change with variations in economic and industrial 

conditions. In this study, the cost data is fitted to a normal 

distribution. The results of the repair cost data collections for 

the three damage states mentioned earlier are presented in 

Table 5. 

Generic Expected Loss Function for Drywall Partition 

Considering three damage states in Equation 1, expected 

seismic loss for per square metre of drywall partition can be 

expressed as, 

321 /3/2/1/ DpartitionDpartitionDpartitionIDRpartition lPlPlPL   

 (6) 

where, Lpartition/IDR is the expected loss per square metre of 

drywall partition; P1, P2 and P3 are the probabilities of 

attaining DS1, DS2 and DS3, respectively, at a given IDR 

level as shown in Figure 11; and 
1/ Dpartitionl , 

2/ Dpartitionl  and 

3/ Dpartitionl  are the cost of partition repair/replacement 

corresponding to the three damage states DS1, DS2 and DS3, 

respectively. 

To account for the propagation of different uncertainties, MC 

simulations are carried out using MATLAB® to combine the 

collected cost data with the fragility functions and to obtain a 

range of expected loss per square metre of partition at different 

drift levels. At each drift level, the probabilities of failure are 

obtained using Equation 2. The repair/replacement cost 

corresponding to each damage state is then randomly selected 

from the idealized distribution of costs. Expected 

repair/replacement cost is calculated repeatedly for 10,000 MC 

simulations using Equation 6 at a given drift level. The 

average expected repair/replacement cost per square metre of 

partition is presented with respect to the IDR in Figure 12(a). 

If needed, the costs shown in Figure 12(a) can be presented as 

a percentage of the full replacement cost of the partition. Such 

a relation may be more useful as the normalisation will make 

it applicable to construction outside Christchurch as well. The 

result of such a normalisation is shown in Figure 12(b). 

However, as the collected data shows that the replacement cost 

also has substantial uncertainty, using the mean replacement 

cost will not propagate this uncertainty, and another MC 

simulation will be needed to get normalized partition repair 

cost with different confidence levels.

  

(a) (b) 

Figure 12: (a) Repair cost per partition area vs. inter-storey drift; and (b) percentage of complete partition repair/replacement 

cost.  
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(a) (b) 

Figure 13: (a) Generalized expected loss for partitions; and (b) generalized and normalized (in terms of total building cost) 

expected loss curves for partitions.  

The aim of the envisaged generic loss function is to provide 

the total likely partition loss in a building with a known floor 

area (without having to measure the partition area). For this 

purpose, the expected loss function is required to be modified 

by using the partition ratio as given in Equation 7. 

HRLIDRL PIDRpartitionP  /)(   (7) 

where, LP(IDR) is the expected loss due to partition damage 

per square metre of floor area at a given drift level; and H is 

the average partition wall height. As the height of the partition 

(loosely equal to storey height) was found to vary little over 

the building floors, this is considered as a deterministic 

parameter in the calculation. The uncertainty propagation from 

Lpartition/IDR and RP to the final expected loss due to partition 

per square metre of floor is addressed using MC simulation. 

In this study, Equations 6 and 7 are combined, and a single 

MC simulation is conducted by treating the three damage state 

repair/replacement costs and the partition ratio as primary 

variables. At each drift level, 100,000 simulations are 

conducted. Within each simulation, a random partition ratio is 

generated using the distributions shown in Figure 10(b). 

Random costs for the three different damage levels were also 

established using a normal distribution and the costs input 

from Table 5. The average partition wall height was 

considered as 2.6 m based on the collected data. The 

computed expected losses were averaged to obtain the final 

expected loss due to partition damage per square metre of 

floor area at the specified drift level, which is presented in 

Figure 13(a). 

It can be observed in Figure 13(a) that the loss due to partition 

damage will increase with drift levels to a maximum of 

NZ$68 per square metre of office floor area. This is likely to 

be higher than normal due to the inevitable bias induced by the 

recent hike in the construction and repair cost owing to the 

demand surge in Canterbury region. To exclude this bias from 

the expected loss function, and in order to provide a more 

versatile representation of the expected loss, the curve can be 

normalized to the construction cost of the building per square 

metre of floor area. The results of such a normalization (taking 

the variation in building cost into consideration) are shown in 

Figure 13(b). It can now be seen that the likely loss due to 

partition damage reaches a maximum of 3.4% of the total cost 

of a building (approximately). This is a small but significant 

contribution and the building clients should be acutely aware 

of this fact. 

Case Study 

To confirm the accuracy and feasibility of the generic loss 

functions developed for partition walls, three case study 

buildings from the building drawing archive are examined. 

Actual building plans are to determine the exact size of 

partition walls in different floors in these buildings. The likely 

partition losses are calculated separately for each floor using 

inter-storey drifts estimated for different floors of these 

buildings corresponding to different hazard levels. 

First among the three case study buildings is the now-

demolished 96 Hereford Street in Christchurch. This was a 10 

storey RC frame building built in 1987 and founded on 

deep/soft soil as per geotechnical reports. It consisted of three 

laterally resisting frames in one direction, and four laterally 

resisting frames in the other direction. The direction of loading 

for the analysis is assumed to be in the direction that gave the 

greatest drift. The building’s first three floors were used as 

retail space, therefore have not been included in the 

calculation herein.  

For comparison with the developed loss function prediction, 

calculation of partition loss for a design level earthquake with 

a 500 year return period is explained in detail here. For 

calculating the inter-storey drifts, the building is represented 

by a bare 2D frame. The storey forces are calculated by 

distributing the design base shear as per the equivalent static 

method stipulated in NZS1170.5 [22]. To calculate the 

displacements, the ideal rigid-beam shear stiffness of the 

frame (i.e. number of columns × 12EI/H3) is adjusted to 

account for the beam flexibility. To adjust the stiffness, the 

equivalent lateral stiffness for a one-storey frame is 

determined based on the layout of the first floor of the 

building. This assumes that the three-bay frame has five 

degrees of freedom (neglecting the axial deformation of 

members); out of which the four rotational degrees of freedom 

are condensed to find an equivalent floor translational degree 

of freedom. The equivalent shear stiffness of the frame is 

found to be 65% of the ideal rigid-beam shear stiffness. 

The following steps are used in calculating the drift between 

different storeys (i.e. EDP for the partition walls in different 

storeys). 

(i) Seismic weights at all floor levels are calculated as per 

New Zealand Standard [22] excluding the stairwells. 

(ii) Effective storey shear stiffness of the laterally resisting 

frame is estimated as explained above. 
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(iii) The natural period of the fundamental mode is estimated 

using Rayleigh’s method. 

(iv) The design base shear for the estimated period is 

calculated and distributed to the floors using the 

equivalent static method. A ductility of 2 is used in the 

calculation, which is in line with the ductility used in the 

assessment of RC buildings designed in the 1980s in New 

Zealand. 

(v) Elastic storey drifts are calculated using the storey shear 

forces and effective shear stiffness. 

(vi) The inelastic drifts for all storeys are calculated using a 

ductility factor of 2. 

The natural period of this structure is estimated as 1.72 sec. 

The estimated inter-storey drift ratios vary between 1.41% and 

0.4%. Using the calculated inter-storey drift and the floor area 

measured from the building plans, the approximate partition 

loss in a given floor can be readily determined using the loss 

function shown in Figure 13(a). Once this is repeated for all 

floors, the total loss from partitions for the whole building can 

then be obtained by adding the floor level losses. Thus, the 

likely partition loss at a design level (i.e. 500 year return 

period) seismic event as predicted using the proposed loss 

function comes out to be about NZ$195,000 (refer to last 

column of Table 6).  

Table 6: Comparison between the calculated partition losses 

for the 96 Hereford Street Building 

 Partition loss 

Floor 
Area 

(m2) 

IDR 

(%) 

Partition 

length 

(m) 

Actual 

calculation 

(NZ$) 

Loss 

function 

prediction 

(NZ$) 

10 540 0.40 134.9 4,917 4,361 

9 540 0.67 114.6 18,589 19,421 

8 540 0.92 114.9 28,336 29,562 

7 540 1.13 133.6 38,239 34,280 

6 540 1.32 113.2 33,619 35,576 

5 540 1.47 147.2 44,164 35,904 

4 540 1.41 85.1 25,488 35,880 

   Total 193,353 194,983 

The next step to be completed is to calculate an expected loss 

using the actual partition wall lengths. In order to do this, the 

actual length of partition walls and partition wall heights 

measured from the building plans are used along with the 

calculated inter-storey drifts, partition fragility functions and 

the mean repair costs for different damage states. Alternately, 

the drift and partition area can be directly used to calculate the 

actual expected loss due to partition damage using Figure 12 

(i.e. the repair cost per square metre of partition vs. the inter-

storey drift). This is repeated for all floors throughout the 

building to obtain the total loss. The partition losses calculated 

by these two methods are compared in Table 6. 

As can be seen from Table 6, total partition losses for the 

building calculated from the two approaches differ by less 

than 1%. The loss function slightly overestimates the expected 

partition loss because the actual length of partition walls in 

this building is marginally less than the average. However, 

significant difference between the two predictions can be 

observed in some floor level losses; this is mainly because the 

partition lengths in these floors distinctly differ from the mean 

partition ratio used in the loss function. For example, the 4th 

floor loss varied by 29% due to the very small amount of 

partition on that floor compared to the average of the data 

collected. As expected, the cost of partition repair for the 96 

Hereford Street building was more significant in the lower 

floors where the drift is larger. 

To further confirm the applicability of the loss function, the 

method outlined above is applied for two more buildings 

damaged in the Canterbury earthquakes and demolished. 

These buildings are the previous Christchurch police station 

building and the 254 Montreal Street building.  

The police station building was a 15 storey reinforced concrete 

structure, three levels of which were a podium about twice the 

plan area of the tower above. Based on the limited information 

of the foundation, the building was founded on sandy gravel 

for a depth of about seven metres, and below that a layer of 

about six metres of loose sand of medium density. The gravity 

loads and lateral forces were resisted by ductile reinforced 

concrete moment resisting frames. In the tower, the east-west 

and north-south frames consisted of four bays and three bays 

respectively [40]. A ductility factor of 2 is used for this 

structure. The natural period of the structure is estimated as 

1.96 sec. The estimated inter-storey drift ratios vary between 

1.64% and 0.33%. Three stories are excluded from the 

calculations due to non-office application. The 254 Montreal 

Street building was a six storey building including a ground 

floor. The upper five stories are considered in the study and a 

ductility factor of 2 is assigned to the structure. The natural 

period of the structure is estimated as 0.7 sec. The estimated 

inter-storey drift ratios vary between 1% and 0.35%. 

The comparison between the actual calculation and the loss 

function prediction for the three case study buildings is shown 

in Table 7. Note that for consistency, all calculations shown in 

Table 7 are done without adjusting the rigid beam shear 

stiffness of the frames; that is why the loss for 96 Hereford 

Street is less than that shown in Table 6. 

Table 7: Comparison between the predicted and the actual 

loss assessment for the case study buildings 

 Partition loss (NZ$) 
Difference 

(%) Actual 

calculation 

Loss 

function 

96 Hereford Street 158,810 160,442 1.0 

254 Montreal Street 63,939 64,010 0.1 

Police Station 224,999 222,112 1.3 

The percentage difference between the two predictions is 

small enough (<2%) for all three case study buildings. The 

average difference is 0.8%. The police station building has the 

greatest cost due to the size of the building and higher 

expected drift levels; as a result there is a relatively larger 

difference between the loss function prediction and the actual 

calculation. The method is then repeated for the three 

buildings using different return period factors; i.e. for different 

seismic intensity levels. The expected losses due to damage of 

drywall partition per square metre of floor area obtained using 

the developed generic loss function and detailed loss analyses 

are presented in Table 8. The percentage difference between 

the actual calculation using the measured partition lengths and 

the generic loss function prediction is also shown in Table 8. 

The police station building is expected to suffer a greater 

damage per floor area because it is subject to higher drift 

levels. The building at 254 Montreal Street undertakes small 

drift at a return period factor of 0.5. Therefore, there is a low 

normalized cost and large percentage difference. The small 

percentage difference across the different buildings at different 

hazard levels indicates that the proposed partition wall loss 

function provides a tool for simple and quick estimation of 

partition loss in RC office buildings. It should be noted that 

the normalized loss is calculated with respect to the partition 

repair and replacement costs in Christchurch, New Zealand 

and may need to be adjusted for other countries. 
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Table 8: Comparison of expected losses due to damage of drywall partition per square metre of floor area 

Return period factor 

(Annual probability of exceedance) 
Building 

Normalised partition loss (NZ$) 
Difference (%) 

Actual calculation Loss function 

0.5 (1 in 100 year) 

96 Hereford Street 11.9 12.0 0.9 

254 Montreal Street 2.2 2.0 8.8 

Police station 14.8 14.4 2.8 

1 (1 in 500 year) 

96 Hereford Street 42.0 42.5 1.0 

254 Montreal Street 23.1 23.1 0.1 

Police station 44.7 44.1 1.3 

1.3 (1 in 1000 year) 

96 Hereford Street 51.2 51.6 0.8 

254 Montreal Street 35.0 35.1 0.2 

Police station 52.3 51.8 1.0 

1.8 (1 in 2500 year) 

96 Hereford Street 58.7 59.0 0.5 

254 Montreal Street 49.7 49.4 0.5 

Police station 58.8 58.3 1.0 

     

CONCLUSIONS 

Generalized loss functions for two important non-structural 

components (NSCs), namely suspended ceilings and drywall 

partitions, are developed herein. The existing methodologies 

for floor level loss functions are extended in combination with 

component distributions to develop generalized functions for 

EDP vs. expected loss per square metre of floor area. The 

developed expected loss functions facilitate quick estimation 

of approximate seismic losses due to suspended ceilings and 

drywall partitions without requiring any specific information 

on the component amount/quantity and location within the 

building. 

Using the drawings of a 725 rooms from 29 different RC 

office buildings in Christchurch CBD, a large data set of 

suspended ceilings and drywall partition sizes (in relation to 

the building floor area) was collected. In addition, builders and 

manufacturers were consulted to collect data on the repair and 

replacement costs of different levels of damage to these 

components. A series of MC simulations are carried out using 

the distributions of these collected data together with the 

fragility functions available in literature to develop generalised 

and normalized loss functions for these components. The 

collected data and the generated normalized loss functions 

suggest that the loss from suspended ceilings and partition 

damage in RC office buildings could be up to 5.5% and 3.4% 

of the total cost of the building, respectively. The usefulness 

of the developed loss functions are compared with the 

expected losses calculated using actual suspended ceiling 

component distributions from five floors of a case study 

building, and drywall partition from three case study 

buildings. The differences between the loss function 

predictions and the actual estimated losses are found to be 

negligibly small for both components across all the case study 

buildings subjected to different levels of seismic intensity. 

The generic loss functions developed in this study provide a 

useful tool for fast prediction of the seismic losses contributed 

by suspended ceilings and drywall partitions without requiring 

any information on the distribution of these components. Such 

easy-to-use loss functions for all major components in a 

building are required to facilitate estimation of seismic loss of 

buildings for the future generation of performance based 

seismic design guidelines, which may use seismic loss as a 

key parameter for decision making 
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