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ABSTRACT 

Damaging earthquakes in Australia and other regions characterised by low seismicity are considered low 

probability but high consequence events. Uncertainties in modelling earthquake occurrence rates and ground 

motions for damaging earthquakes in these regions pose unique challenges to forecasting seismic hazard, 

including the use of this information as a reliable benchmark to improve seismic safety within our 

communities. Key challenges for assessing seismic hazards in these regions are explored, including: the 

completeness and continuity of earthquake catalogues; the identification and characterisation of neotectonic 

faults; the difficulties in characterising earthquake ground motions; the uncertainties in earthquake source 

modelling, and; the use of modern earthquake hazard information to support the development of future 

building provisions. 

Geoscience Australia recently released its 2018 National Seismic Hazard Assessment (NSHA18). Results 

from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 

1/500 annual exceedance probability level relative to the factors adopted for the current Australian Standard 

AS1170.4–2007 (R2018). These new hazard estimates have challenged notions of seismic hazard in Australia 

in terms of the recurrence of damaging ground motions. This raises the question of whether current practices 

in probabilistic seismic hazard analysis (PSHA) deliver the outcomes required to protect communities and 

infrastructure assets in low-seismicity regions, such as Australia. This manuscript explores a range of 

measures that could be undertaken to update and modernise the Australian earthquake loading standard, in 

the context of these modern seismic hazard estimates, including the use of alternate ground-motion 

exceedance probabilities for assigning seismic demands for ordinary-use structures. 

The estimation of seismic hazard at any location is an uncertain science, particularly in low-seismicity 

regions. However, as our knowledge of the physical characteristics of earthquakes improve, our estimates of 

the hazard will converge more closely to the actual – but unknowable – (time independent) hazard. 

Understanding the uncertainties in the estimation of seismic hazard is also of key importance, and new 

software and approaches allow hazard modellers to better understand and quantify this uncertainty. It is 

therefore prudent to regularly update the estimates of the seismic demands in our building codes using the 

best available evidence-based methods and models. 

 

INTRODUCTION 

Forecasting seismic hazard in stable continental regions (SCRs) 

brings unique challenges to hazard modellers and practitioners 

in terms of the characterisation of seismic sources and their 

ground motions. By their very nature, SCRs experience 

significantly lower rates of seismicity compared to tectonic 

plate margins, such as New Zealand. As a consequence, the 

typical observation period of historical (or instrumental) 

seismicity is significantly shorter than the seismic cycle of rare 

large earthquakes that may generate damaging ground motions 

on any given fault. Critics of probabilistic seismic hazard 

analysis (PSHA) for use in SCRs often claim that the 

uncertainties in seismological knowledge are too large to allow 

modern hazard assessments to underpin earthquake loading 

codes.  Further, some argue that any exceedance of mapped 

hazard is a failure of the method to correctly identify regions at 

risk. However, the PSHA methodology is defined such that the 

mapped values will be exceeded, and this should occur at a pre-

defined probability of exceedance as stipulated in earthquake 

loading codes. In assessing the performance of seismic hazard 

maps, there will inevitably be some error and uncertainty 

around the observed exceedance rate due to the modelling 

uncertainty and natural randomness of earthquake events [1]. A 

key benefit of the PSHA framework, however, is the ability to 

include multiple sources of modelled uncertainty and to 

propagate these uncertainties through to the final hazard result 

[2]. Modern seismic hazard calculation software [e.g., 3] now 

enables improved characterisation of modelling uncertainties 

and can provide additional information regarding the utility and 

confidence of seismic hazard assessments for end users [e.g., 4, 

5].  

Seismic hazard assessments in SCRs are often more dependent 

on earthquake catalogues and the relationships between small-

to-large earthquakes [e.g., 6] than in seismically active regions, 

with a high-dependence on the rates of small-magnitude 

earthquakes to forecast the occurrence rates for larger events of 

greater societal concern. The completeness of earthquake 

catalogues, together with changes in observatory practice over 

time delivers challenges in ensuring the catalogue provides a 

consistent representation of an earthquake’s size over time, 

making the estimation of earthquake occurrence parameters 
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highly sensitive to these practices and the constantly changing 

detection thresholds of the seismic networks. 

The characterisation of seismic sources can be undertaken using 

several philosophical approaches, each of which are 

scientifically defendable. The use of multiple seismic source 

models allows for the exploration of epistemic uncertainty (i.e., 

uncertainties due to lack of knowledge) among different 

models. However, this may present further challenges in 

assessing the utility of different source-model types (e.g., 

smoothed or zoned seismicity) over different spatial scales and 

return periods of interest. 

In Australia, the limited observation period is exacerbated by 

the sparse seismic recording network relative to the size of the 

continent. This means that even when a moderate-to-large 

earthquake does occur within the continental crust, it will often 

be poorly recorded in terms of its ground-motion accelerations. 

Consequently, the densification of seismic monitoring 

instrumentation is key for capturing strong-motion data from 

future large earthquakes. Nevertheless, the relative paucity in 

strong-ground motions recorded from Australian earthquakes 

presents challenges for the characterisation of earthquake 

ground-motions and the selection of appropriate ground-motion 

models (GMMs) for seismic hazard analysis [e.g., 7]. These 

models are commonly adopted from analogue tectonic regions. 

However, there are some unique characteristics for Australian 

earthquakes and recorded ground motions that make these 

decisions challenging in the absence of reliable locally-

developed models. 

In 2018, Geoscience Australia, together with contributions from 

the wider Australian seismology community, released a revised 

National Seismic Hazard Assessment [NSHA18; 8]. Relative to 

the seismic hazard map included in the AS1170.4–2007 

(R2018), the NSHA18 leverages advances in earthquake-hazard 

science in Australia and analogue tectonic regions over the last 

three decades to offer many improvements over its predecessors 

as summarised in Allen et al. [5]. Through the NSHA18, peak 

ground acceleration (PGA) values at the 1/500 annual 

exceedance probability (AEP) across Australia have decreased, 

on average, by 72% relative to the earthquake hazard factors 

provided for localities in the Australian earthquake loading 

code, AS1170.4–2007 [9].  

These new hazard estimates, coupled with changes to site-

specific probability factors (kp), which scale the 1/500 AEP 

hazard factors to different exceedance probabilities, have 

challenged notions of seismic hazard in Australia in terms of 

the recurrence times for damaging ground motions [10]. In light 

of this assessment, it is timely to review whether the ground-

motion probability level of 1/500 AEP – as prescribed by the 

National Construction Code [11] for use in the AS1170.4 – is 

appropriate for the design of ordinary-use structures. 

In this contribution, some of the challenges and uncertainties 

facing seismic hazard analysis in slowly deforming continental 

interiors are discussed and opportunities to overcome these 

challenges are considered. Moreover, opportunities to advance 

earthquake-hazard science and modernise building provisions 

for earthquake engineering professionals in Australia, and 

similar low-seismicity environments, are discussed in the 

context of the NSHA18 results.  

CHALLENGES FOR SEISMIC HAZARD 

ASSESSMENT IN STABLE CONTINENTAL REGIONS 

Given the typically low rates of natural seismicity, there are 

high degrees of uncertainty for PSHAs in any SCR. This 

uncertainty manifests in many ways: identification and 

characterisation of active neotectonics faults, accurate and 

consistent earthquake catalogues, ground-motion 

characterisation, and seismic-source modelling to name a few. 

While these challenges contribute significant uncertainties in 

the assessment of seismic hazard for SCRs, there are several 

opportunities to improve our knowledge in PSHA component 

models. These opportunities are discussed below. 

Identification and Characterisation of Active Faults 

Unique challenges are faced in modelling the seismic hazard 

from active (or neotectonic) faults in intraplate regions. Low 

fault slip rates relative to landscape modification rates often 

lead to poor discoverability of fault sources, and result in 

incomplete characterisation of rupture behaviour [e.g., 12]. To 

underscore this point, none of the nine historical surface-

rupturing earthquakes occurring within the Australian continent 

could have been identified from a topographic signature prior 

to their causative event [13, 14]. However, regional and local 

assessments have demonstrated that fault sources assigned with 

activity rates consistent with paleoseismic observations can 

significantly impact on probabilistic seismic hazard 

assessments in Australia [8, 12, 13, 15, 16], particularly for 

lower exceedance probabilities where there may be several fault 

sources that contribute to the total seismic hazard. 

Incompleteness of the neotectonic fault record might be 

expected to result in an under-estimate of the hazard, especially 

in regions where landscape modification rates are comparable 

to, or exceed the rates of tectonic relief building [12, 17]. 

However, the incompleteness in the fault record might be 

counterbalanced by the knowledge that faults with lower slip 

rates and thus, low potential of discovery, are not expected to 

contribute significantly to ground-motion hazard for 

exceedance probabilities that may affect ordinary-use structures 

(e.g., 1/475 or 1/2475 AEP) [e.g., 13, 14]. Nevertheless, the 

seismogenic characteristics (in terms of frequency, magnitude 

and temporal variability) of various combinations of geology, 

crustal architecture and geological history are underexplored 

and relatively poorly understood in terms of their seismic 

potential. These are significant challenges that face seismic 

hazard modellers in SCRs. However, new, openly-available 

high-resolution topographic datasets (e.g., 

elevation.fsdf.org.au/) are now becoming available across much 

of the continent. These data, combined with dedicated field 

investigations could enable improved discoverability and 

seismogenic characterisation of neotectonic faults across 

Australia. Furthermore, studies investigating the potential for 

earthquake spatial and temporal clustering behaviour among 

faults will no doubt improve our ability to model the likelihood 

of earthquake ruptures on known faults across the continent [18, 

19] and in analogue regions [20]. 

Developing Consistent Catalogues 

Earthquake catalogues that have well-defined magnitude-

completeness thresholds with magnitudes that are uniformly 

expressed using consistent magnitude types are fundamental 

inputs into any PSHA and are used to establish earthquake 

occurrence rates for a given area source zone [e.g., 21] or 

spatially varying smoothed seismicity models [e.g., 22]. In 

practice, neither the magnitude of completeness nor the 

consistency of magnitude calculation procedures over time can 

be known to a high degree of certainty throughout Australia. 

Consequently, the reliance on this information to deliver 

forecasts for large earthquakes can contribute large 

uncertainties in seismic hazard. 

Prior to the early 1990s, most Australian seismic observatories 

relied on the Richter [23] local magnitude (ML) formula 

developed for southern California [21]. At regional distances 

(where many remote earthquakes are recorded), the Richter 

scale tends to overestimate ML relative to modern Australian 
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magnitude formulae [e.g., 24] by up to half an order of 

magnitude or more [25]. Consequently, historical earthquakes 

of the same energy release could have very different 

magnitudes depending on their location relative to the recording 

network. 

Modern PSHAs rely on earthquake catalogues consistently 

expressed in terms of moment magnitude, MW. However, MW is 

still not commonly calculated for small-magnitude local events 

by many national networks, including Australia. For use in 

earthquake recurrence calculations [i.e., 6], magnitude 

conversion equations are often applied to convert ML to MW. 

Unless these conversions are time-dependent, they commonly 

assume that ML estimation has been consistent for the 

observation period. Consequently, for earthquakes in Australia, 

there is a need to correct pre-1990 magnitude estimates to 

ensure continuity with current observatory magnitude 

estimation methods [26]. Ideally, this could be achieved using 

original amplitude and period picks. However, this presently 

cannot be easily achieved for pre-digital (and even some early-

digital) data. Allen et al. [5] explores the impact of the 

aforementioned adjustments to catalogue magnitudes on overall 

hazard. This study shows that the combined effects of ML 

adjustments and MW conversions contribute to reductions in 

hazard by factors of generally two or less on a national scale. 

These hazard reductions are spatially variable and become 

negligable in far northern Australia because the hazard is 

dominated by the regional plate boundary sources [27]. 

Consequently, the hazard in these regions is not significantly 

affected by adjustments in the local earthquake catalogue. 

To address ongoing challenges for catalogue improvement, 

Geoscience Australia is digitising printed and hand-written 

observations preserved on earthquake data sheets. Once 

complete, this information will provide a valuable resource that 

will allow for further interrogation of pre- and early-digital data 

and enable refinement of historical catalogues to improve future 

national-scale seismic hazard estimation. 

Ground-Motion Characterisation 

The aleatory variability within, and epistemic uncertainty 

between ground-motion attenuation models is often considered 

to contribute some of the largest uncertainties in PSHAs [28, 

29]. This is particularly true of SCRs such as Australia with few 

data recorded from moderate-to-large earthquakes. 

Nevertheless, ground-motion models (GMMs) that predict the 

intensity of ground shaking for a given magnitude and distance 

(on a given site class) form an essential component to modern 

PSHAs. Whilst there is a paucity of data from which to develop 

empirical GMMs, stochastic [e.g., 30, 31, 32] and physics-

based simulation approaches [e.g., 33] can be developed 

through the use of local earthquake source and propagation path 

characteristics [e.g., 34]. 

The number of GMMs available for use in PSHAs continues to 

grow rapidly [e.g., 35, 36] and choosing appropriate models for 

any given tectonic region type is a challenging task. Whilst 

tectonic analogues can be a reasonable first-order 

approximation for GMM selection, there can be regional 

differences in ground-motion attenuation among SCRs that may 

limit the extent to which GMMs from tectonic analogues can be 

used [37, 38]. 

Various measures can be applied to provide quantitative 

rankings of GMMs from local and analogue tectonic 

environments [e.g., 39]. Whilst these quantitative analyses can 

be informative, care should be taken not to over-interpret the 

results, particularly given the sparsity of ground-motion 

datasets available in Australia [7], and for other regions of low 

seismicity. For example, the use of quantitative ranking 

measures often reflect the overall performance of a model 

against the entire ground-motion dataset. However, this may 

undermine some desirable features of a GMM, such as model 

performance against near-field or long-period data [e.g., 40]. 

Consequently, there is an ongoing need for professional 

judgement in the selection of GMMs for PSHAs for Australia. 

Additionally, Australia possesses some ground-motion 

characteristics that are largely unique to the continent, which 

mean that it is difficult to simply use “off-the-shelf” GMMs 

from tectonically analogous regions. For example, many of the 

earthquakes occurring in Western Australia occur in the upper 

few kilometres where low-angle crustal detachments [e.g., 41] 

combined with high near-surface crustal stresses [e.g., 42] 

appear to favour the occurrence of earthquakes at shallow 

depths. The very shallow earthquake hypocentres combined 

with a shallow lower-velocity crustal layer allow for the 

excitement of large Rg phases [33] that dominate acceleration 

spectra at periods near 1 second [e.g., 40] (Figure 1). 

 

Figure 1: An example of a velocity seismogram, recorded at 

Narrogin (NWAO) during the 16 September 2018 MW 5.3 

Lake Muir, southwestern Western Australia earthquake. The 

station was approximately 170 km from the earthquake’s 

epicentre. The record shows a strong Rg phase arrivals at 

longer periods (indicating a shallow rupture depth), which is 

characteristic of seismic recordings from this region. 

Other unique ground-motion characteristics are observed in 

northern Australia. At its nearest, Australia is just over 400 km 

from an active convergent plate margin. This complex tectonic 

region combines active plate subduction and the collision of the 

Sunda-Banda Arc with the Precambrian North Australian 

Craton (NAC) at the Timor Trough.  

Ground-motions generated from earthquakes on these sources 

have particular significance for northern Australian 

communities and infrastructure projects, with several large 

earthquakes in the Banda Arc region having caused ground 

shaking-related damage in Darwin over the historical period 

[43, 44]. There are very few regions of the world where cold 

cratonic crust abuts a convergent tectonic margin with 

subduction earthquakes. Most ground motions recorded from 

earthquakes in typical subduction environments are highly 

attenuated as they travel through volcanic back-arc regions 

[e.g., 45]. However, seismic energy from earthquakes in the 

northern Australian plate margin region are efficiently 

channelled through the low-attenuation NAC [46, 47], which 

acts as a waveguide for high-frequency earthquake shaking 

[48]. The low rate of attenuation means that choosing ground-

motion models for these subduction earthquakes that reflect 

both the earthquake source and attenuation characteristics of the 

region is a major challenge in PSHAs. 

There is still much to do in terms of characterising ground-

motions from Australian earthquakes for use in seismic hazard 

assessments, particularly due to the sparse recording networks 

and low rates of seismicity. However, knowledge in the 

character of ground-motion attenuation throughout the 

continent is gradually evolving. Data acquired from recent 

Australian earthquakes [14, 49] will have significant utility to 

enable more informed choices for GMMs for future hazard 

assessments and will support future empirical and simulated 
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ground-motion studies for the nation. Underpinning this is the 

need for a database of uniformly-processed ground motion 

records from Australian earthquakes and accompanying site 

characterisation information, similar to those developed for 

New Zealand [e.g., 50, 51]. Ongoing enhancements to seismic 

monitoring networks will also provide opportunities to augment 

existing ground-motion datasets. 

Seismic-Source Characterisation 

Seismic source (or rate) models describe the annualised 

magnitude-frequency occurrence likely within a particular 

source zone, or spatially varying grid of point sources. 

Alternative seismic source models combined through a 

weighted logic-tree approach are often used in PSHAs to 

capture the epistemic uncertainty of multiple scientifically 

defensible alternatives [e.g., 2, 52]. The calculated ground-

motion hazard can be very sensitive to the location of classical 

area-source-model boundaries [53]. The placement of these 

boundaries is often subjective and can be dependent on a 

modeller’s professional judgment and experience. Furthermore, 

if the modeller only considers one zone-based seismic-source 

model, the strongest hazard gradients will often tend to occur in 

the vicinity of the area source boundaries. Because the area-

source boundaries developed by two (or more) independent 

modellers are unlikely to be duplicated exactly, the use of 

multiple seismic source models will introduce “fuzzy” source-

zone boundaries and will act to damp these strong spatial hazard 

gradients. In the NSHA18, five different seismic source-model 

classes were used [8]. These include: 

• Background area source zones that use broad geographic 

zones within which large earthquakes can occur anywhere 

with equal probability. These are typically models with 20 

or fewer area-source zones on a national scale; 

• Regional area source zones are smaller in size and assume 

the spatial distribution of seismicity is non-uniform at the 

scale of background source zones. Consequently, the 

distribution of historical seismicity is useful to forecast 

future earthquake occurrence. These are typically models 

with 30 or more area sources; 

• Smoothed seismicity data-driven models that yield 

spatially-varying earthquake occurrence rates by 

smoothing the observed rates of earthquake occurrence 

with a given smoothing kernel [e.g., 54]. These models 

assume that historical seismicity is a good predictor of 

future seismic hazard; 

• Seismotectonic models (e.g., regional zones combined 

with a fault-source model) [55], and; 

• Smoothed seismicity combined with a fault-source model. 

The latter two source-model types that include fault sources 

represent minor variations on the regional and smoothed 

seismicity models. The NSHA18’s fault-source model included 

some 356 onshore faults and 23 offshore faults, modelled as 

simplified planes and assigned with a general dip and rake 

direction [55, 56]. Slip rates are calculated from: 1) displaced 

strata of known age; 2) estimated from surface expression 

combined with knowledge of landscape modification rates 

(e.g., erosion and/or deposition), and/or; 3) are estimated by 

proxy from similar neotectonic settings. In a small number of 

instances slip rate data are available from paleoseismic 

trenching investigations [e.g., 18, 57, 58]. 

In total, the NSHA18 used 19 independent seismic-source 

models for estimating the rates of earthquake occurrence at any 

given location in continental Australia [5, 8]. These source 

models were weighted through a logic-tree framework [59, 60] 

and each provide a unique spatial representation of hazard 

(Figure 2). As demonstrated in Figure 2, the consequence of 

using background source models that distribute earthquake 

rates uniformly across large areas (Figure 2a) may lead to lower 

seismic hazard values in regions where seismicity has been 

relatively stationary in the modern instrumental era [21] (Figure 

2b-c). 

 

Figure 2: The mean 10% in 50-year PGA hazard expressed 

by three end-member source model types as used in the 

NSHA18: a) broad background sources [NSHM12; 61]; b) 

regional area sources [NSHM12; 61], and; c) smoothed 

seismicity [GA Fixed Kernel; 22].
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One challenge for forecasting seismic hazard for SCRs is the 

long recurrence times for large earthquakes. While the use of 

background source models may need to be reconsidered for 

eastern Australia, there is mounting evidence in central and 

western Australia to suggest that seismicity is non-stationary 

over time and could vary over decade-long timescales [13, 17, 

21]. Therefore, the use of background source models that allow 

for large earthquakes to migrate spatially over longer time 

horizons may become more important. Furthermore, these 

source-model-types allow for rare “black swan” events to 

occur, albeit with low probabilities, in regions where previous 

large earthquakes have not been observed in the historic or 

neotectonic record. A prime example of these event types is the 

1988 Tennant Creek sequence, where three large MW > 6.0 

earthquakes occurred within a 12 hour period in a location that 

had effectively been aseismic during historical times [62]. 

Additionally, the apparent anti-correlation of some neotectonic 

fault scarps and present-day seismicity suggests that these rare 

events should be modelled over broad regions [14].  

Hazard modellers must therefore strike a balance between these 

end-member models when calculating seismic hazard at 

national scales. Furthermore, the relative weight placed on a 

specific model type (e.g., smoothed seismicity, regional or 

background) might vary spatially, and also on the target 

exceedance probability of interest [e.g., 63]. 

OPPORTUNITIES TO UPDATE BUILDING CODES 

The results of the NSHA18 have challenged notions of seismic 

hazard in Australia and have raised questions over the 

suitability of the probability level – prescribed by the National 

Construction Code [NCC; 11] and as applied in the AS1170.4 – 

to determine seismic demands for the design of ordinary-use 

structures. Whilst changing the AS1170.4 exceedance 

probability level would be a major departure from previous 

earthquake loading standards, it would bring it into line with 

other international building codes in similar tectonic 

environments. Additionally, it would offer opportunities to 

further modernise how seismic demands are considered in 

Australian building design. In particular: 1) the scaling of 

seismic hazard with different probabilities of exceedance (i.e., 

the shape of hazard curves); 2) the use of uniform hazard 

spectra to replace and simplify the spectral shape factors, which 

do not deliver uniform hazard across all oscillation periods; 3) 

the updated site amplification factors to ensure continuity with 

modern ground-motion models, and; 4) the potential to define 

design ground motions in terms of uniform collapse risk rather 

than uniform hazard. 

The AS1170.4 was recently amended by Standards Australia’s 

BD–06–11 Technical Subcommittee [64]. The amended 

AS1170.4–2007 (R2018) retains seismic demands developed in 

the early 1990s [65] and introduces a minimum hazard design 

factor of Z = 0.08 g, partly due to concerns that modern 1/500 

AEP hazard factors proposed in the NSHA18 would not assure 

life safety throughout the continent. Herein, we discuss 

opportunities to modernise the standard and allay these 

concerns, should the BD–06–11 Technical Subcommittee seek 

to update the earthquake loading code to reflect the latest 

evidence-based science for future standards. 

Shape of Hazard Curves 

One of the major differences in seismic hazard between active 

tectonic regions (ATRs) and SCRs is how the shape of the 

hazard curve changes with decreasing probabilities of 

exceedance. Figure 3a shows a comparison of seismic hazard 

curves for selected Australian sites as calculated in the 

NSHA18 relative to hazard curves based on the OpenQuake 

implementation [e.g., 66] of the 2010 national seismic hazard 

model of New Zealand [67]. This figure clearly shows the 

absolute differences in seismic hazard, as might be expected 

from relative earthquake occurrence rates between Australia 

and New Zealand. However, by normalising the curves to an 

arbitrary exceedance probability (Figure 3b), the difference in 

the rate of change of the hazard curves between the SCR and 

the New Zealand ATR sites is more clearly expressed, with the 

hazard for a typical Australian site increasing at a much faster 

rate at low probabilities (or longer return periods) than typical 

sites in New Zealand. This is a common feature found in other 

hazard assessments that consider both SCRs and ATRs [e.g., 

68] and is a consequence of the increasing influence of low-

probability large earthquakes at longer return periods. 

 

Figure 3: Top panel (a) show NSHA18 PGA hazard curves 

for representative Australian (Perth, Darwin, Adelaide and 

Canberra) and New Zealand (Auckland, Wellington and 

Christchurch) cities. Bottom panel (b) shows the same 

hazard curves normalised at the 1/475 AEP to emphasise 

rate of change of hazard curves between Australian (SCR) 

and New Zealand (ATR) localities. 

While the current design probability in Australia for ordinary-

use structures is 1/500 AEP, it is necessary to scale seismic 

hazard to different ground-motion return periods for the design 

of high-importance structures, in particular. In the AS1170.4–

2007, this is achieved using the probability factor (kp), 

equivalent to the return period factor RS or RU in the NZS 

1170.5–2004 [69]. The kp factor is calculated by normalising 

the hazard curve by its value at a recurrence interval of 500 

years. The AS1170.4–2007 uses the same factors for PGA as 

defined in the NZS 1170.5–2004 and derived by McVerry [70] 

for a spectral period of Sa [0.5 s]. Thus, the AS1170.4–2007 

assumes that PGA in Australia scales with return period 

similarly to Sa [0.5 s] for average sites in New Zealand. As with 

the 2012 National Seismic Hazard Maps [NSHM12; 71, 72], the 

kp factors derived from the NSHA18 for the PGA intensity 

measure differ markedly from those factors given in the current 

Standard, with a national average of kp = 3.15 at the 1/2500 

AEP, compared to kp = 1.8 in the AS1170.4–2007. The use of 

the NSHA18-derived kp factors, on average, would represent an 

increase in hazard scaling from 1/500 to 1/2500 AEP of 

approximately 75% relative to the current AS1170.4–2007 

factors. 
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Figure 4 shows the comparison of kp factors for the eight capital 

cities across Australia. It is clear that there is a large variation 

in the kp factors among these localities. Differences in kp factors 

between localities expresses the difference in the shape of the 

seismic hazard curve (e.g., Figure 3). In seismically active 

regions, moderate-to-high level ground shaking has a higher 

chance of being exceeded than in SCRs. Additionally, sites in 

SCRs with low 1/500 AEP hazard will start from a lower base 

hazard level (e.g., Brisbane). Consequently, kp factors will rise 

more rapidly when rarer events occur because the 1/500 hazard 

levels will be more easily exceeded over longer return periods. 

However, this explanation does not hold true for sites affected 

by seismogenic faults, such as Adelaide. The kp factors for 

Adelaide are among the highest because of the nearby fault 

sources, which do not contribute significantly to the hazard at 

the 1/500 AEP due to their estimated long recurrence intervals 

[55]. However, these fault sources will tend to contribute 

proportionately more to seismic hazard at higher return periods, 

as is demonstrated for the kp curve for Adelaide. 

 

Figure 4: The PGA probability factor (kp) for the eight 

capital cities compared to the kp values in AS1170.4–2007. 

The factors are calibrated such that kp = 1.0 for a 1/500 

AEP. The thin vertical dashed line indicates a ground-

motion return period with an annual exceedance probability 

of 1/2500. 

The kp curve for Darwin appears to mimic the factors in the 

AS1170.4–2007, which were derived from the factors 

determined for tectonically active New Zealand [69]. The 

dominant sources of hazard for Darwin are the plate margin 

earthquakes off northern Australia [i.e., 27]. Because these 

sources occur in ATRs, northern Australian sites are likely to 

exceeded moderate levels of ground shaking with shorter return 

intervals. Consequently, the hazard increase for lower 

probabilities of exceedance for Darwin occurs at a slower rate 

relative to typical SCR sites, where the hazard contribution of 

large rare earthquakes leads to faster increases in seismic hazard 

for decreasing probabilities of occurrence [e.g., 68, 73]. It is 

also worth noting that variability in the kp factor (or return 

period factor, RS) is also noted between sites in New Zealand 

[70, 74]. This suggests the need for site-specific hazard scaling 

for different return periods for future seismic design provisions, 

not just in Australia, but in New Zealand as well. 

On a final note, the term “return-period,” commonly used in 

building codes is, to some extent, misleading because it implies 

regularity of recurrence for seismic events, which contradicts 

the time-memoryless Poisson process upon which earthquake 

rate models are based [2]. 

Uniform Hazard Spectra 

In the AS1170.4, the spectral shape factors translate the seismic 

hazard factor (anchored at PGA or Sa[0.0 s]) to an elastic design 

spectrum [e.g., 75]. This spectrum can be used to determine the 

period-dependent design values at the fundamental period of 

interest. This general approach allows design provisions to be 

determined for structures with different fundamental periods in 

many seismic design codes around the world. However, it is 

noted that the definition of these spectral shape factors often 

provides a poor approximation for, in particular, long-period 

displacement spectra [76]. While the shape of the elastic 

response spectrum can change with seismic site class [e.g., 9, 

75], design codes usually do not make provision for changes in 

the shape of the elastic design spectrum owing to earthquakes 

occurring in different tectonic region types with different 

rupture styles, predominant earthquake magnitude, source-to-

site distance [76] and even for different AEPs [77]. As a 

consequence, the standard spectral shape factors will often not 

deliver uniform hazard or risk across all oscillation periods [78]. 

The AS1170.4–2007 introduced some conservatism in 

displacement-based demands through the adoption of a constant 

displacement from a second corner period (T2) in the design 

spectrum at 1.5 s [75]. Many international standards now 

require long-period spectral ordinates (up to 10 s) for the 

seismic design of large long-span structures [e.g., Canadian 

Highway Bridge Design Code, CSA S6-14; 79]. Should this be 

a future requirement for Australia, the shape of long-period 

design spectrum may need to be revisited. 

In Australia, it is recognised that the calculated uniform hazard 

spectrum (UHS) results in different spectral shapes for different 

locations across the continent [8, 72]. A common UHS among 

all sites is not possible because the seismic hazard at one site is 

influenced by earthquakes of different magnitude at different 

distances – as modelled through PSHA – and these will 

contribute differently to the shape of the UHS [e.g., 74]. This is 

underscored by the UHS for the city of Darwin (Figure 5), 

calculated for 11 response spectral periods from T = 0.0 s (or 

PGA) to 4.0 s. The risk of strong earthquake ground motions 

from local earthquakes near Darwin is relatively low given the 

low seismicity rates from known nearby seismic sources. 

Additionally, smaller earthquakes at near-field distances will 

tend to contribute more ground-motion hazard at shorter 

oscillation periods. However, given northern Australia’s 

proximity to the active tectonic-plate boundary in the Timor 

Trough-Banda Sea region, frequent large earthquakes occur and 

many of these are felt in Darwin [43, 44]. Most recently a 

MW 7.3 earthquake on 24 June 2019 caused minor damage in 

the city and has led to a number of insurance claims [80]. Figure 

6 shows the geographic deaggregation of the long-period 

seismic hazard [81] estimated in Darwin from these far-field 

sources based on the NSHA18 seismic source and ground-

motion characterisations. These large distant earthquakes 

contribute significantly to long-period hazard in the UHS 

because the long-period ground motions propagate more 

efficiently over large distances, particularly through old 

continental crust of the North Australian Craton [46]. Based on 

Figure 5, the use of standard elastic design spectrum to 

determine design ground motions for long-period structures 

(such as bridges and dams) in northern Australia may lead to 

the assignment of non-conservative design motions. 

The current International Building Code (IBC), developed in 

the United States (US), uses the risk-targeted maximum 

considered earthquake (MCER) hazard calculated at periods of 

0.2 s (SS) and 1.0 s (S1) to define the design spectrum [e.g., 82]. 
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However, this approach is only appropriate if the peak MCER 

response spectral acceleration occurs near 0.2 s and the peak 

response spectral velocity occurs near 1.0 s for the site of 

interest [83]. The type of event that dominates hazard (i.e. 

crustal, subduction interface, subduction intraslab, etc) may 

also have a bearing on the spectral shape [e.g., 84]. 

Consequently, defining the design spectrum based only on two 

spectral periods will potentially be non-conservative if these 

criteria are not met. For this reason, coupled with dependence 

of the UHS shape based on a site’s location relative to different 

earthquake sources, the use of a full UHS over the range of 

oscillation periods is recommended to determine design spectra 

for future editions of the AS1170.4. This approach is also now 

being adopted by the IBC [e.g., 85]. 

 

Figure 5: Normalised 1/500 AEP UHS on Site Class Be for 

several capital cities from the NSHA18 (see inset for 

location), showing the distinctive long-period behaviour for 

Darwin due to plate-boundary earthquakes north of 

Australia. The respective AS1170.4–2007 spectral shape 

factors anchored to the respective Z values are also shown. 

 

Figure 6: Geographic deaggregation for Darwin SA(2.0 s) 

for a probability of 2% probability of exceedance in 50 years 

showing the estimated influence of Australia’s northern 

plate margin sources on long-period seismic hazard. The 

deaggreation shows the location and magnitudes of the 

seismic sources that contribute to the overall seismic hazard. 

Site Class Factors 

In the AS1170.4–2007, the site classification scheme is similar 

to that initially proposed by the National Earthquake Hazard 

Reduction Program [NEHRP; 86]. However, the AS1170.4 uses 

a site’s natural period (Ts) as an additional criterion for 

classification [75]. The site amplification factors, embedded 

within the spectral shape factors (Standards Australia, 2007), 

are based on average short- and mid-period amplifications (Fa 

and Fv, respectively) with respect to the reference ground 

condition [e.g., 87]. 

The understandings of ground-motion amplification have 

evolved considerably since the mid-1990s with most GMMs 

now explicitly considering period-dependent amplifications 

from the effects of near-surface geology and basin 

amplifications. The augmentation of empirical ground-motion 

datasets with more abundant data across more diverse site 

conditions has, to a large degree, facilitated these advancements 

[e.g., 88]. 

Figure 7 shows a comparison of the AS1170.4–2007 

amplification factors, anchored to Site Class Be [9], relative to 

modern period-dependent amplification factors developed 

through the Next Generation Attenuation (NGA) – West 2 

project [88]. The mapping between NEHRP and AS1170.4 site 

classes used in this study is shown in Table 1. Unlike 

amplification factors implicit within most modern GMMs, the 

factors used in the AS1170.4–2007 are not dependent on 

ground-motion intensity and appear to be non-conservative for 

soft-soil sites and low ground motions (where linear 

amplification is expected) relative to modern amplification 

models (Figure 7a). However, for stronger ground-motions, the 

AS1170.4–2007 factors will tend to be conservative and predict 

stronger amplifications at soil sites owing to expected non-

linear behaviour of modern amplification models for mid-to-

short periods, T < 1.0 s (Figure 7b). The actual ground-motion 

amplification will vary from site to site and will depend on the 

shear-wave velocity profile beneath the site. However, a 

comparison of the current Fa and Fv amplification factors 

shows that the modern models of Seyhan and Stewart [88] 

demonstrate a much smoother transition between short and 

long-period amplification, as well as an improved consideration 

of non-linear shaking effects for strong-ground motions. 

Whilst more empirical observations exist from which to base 

modern amplification factors, it is still very difficult for GMM 

developers to fully decouple wave-path effects from site effects 

(including effects from basins). Moreover, it has been 

recognised that amplification factors vary between GMMs, 

even those with the same reference site condition. The factors 

also vary between tectonic region types for which the GMMs 

were derived [89]. Consequently, the use of a single Fa and Fv 

amplification model anchored to a particular reference site 

condition are likely to be inconsistent with the GMMs used in 

modern probabilistic seismic hazard assessments.  

Table 1: Mapping of AS1170.4-2007 and NEHRP Site Class 

used in this study. 

AS1170.4-2007 Site 

Class 

Modified NEHRP 

Site Class 

Reference VS30 

(m/s) 

Ae B 1100 

Be B/C 760 

Ce C 464 

De D 270 

Ee E 150 

Given this likely disconnect between amplification factors 

developed for GMMs and the reference site condition in 

building codes, the National Building Code of Canada (NBCC) 

is currently calculating seismic design values directly on 

primary (e.g. A-E) and intermediate (A/B-D/E) seismic site 

classes using GMM-specific amplification functions [90, 91]. 

This approach is also being adopted by the US IBC [85]. Thus, 
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it is suggested that, for future editions of the AS1170.4, seismic 

hazard be calculated directly for a given site class using 

amplification models provided by the developers of each of the 

GMMs used in the ground-motion logic tree. 

 

Figure 7: A comparison of the AS1170.4 amplification 

factors, anchored to an AS1170.4 Site Class Be [9; dashed 

lines], relative to modern period-dependent amplification 

factors developed through the NGA – West 2 project [88; 

soid lines]. The top panel (a) demonstrates the Seyhan and 

Stewart [88] amplification model using a reference PGA 

(i.e., PGAref) of 0.1 g (i.e., linear amplification), while the 

bottom pannel (b) shows amplification with non-linear 

effects considered using a PGAref of 0.4 g. The AS1170.4 

factors are not dependent on ground-motion intensity. 

Whilst it would still be incumbent on the user to determine the 

appropriate site class, the adoption of site-class-specific hazard 

maps would fundamentally simplify the way end users would 

determine seismic design values for a given location and site 

class, but would have other technical advantages. Firstly, with 

the advances in modelling ground-motion attenuation, GMMs 

now apply the time-averaged shear-wave velocity in the upper 

30 m of a sites foundation (VS30) as a predictive variable, 

meaning that ground-motions for a given magnitude, distance 

and site class can now be directly computed within a GMMs 

functional form. Secondly, the approach considers the 

epistemic variability among different GMM amplification 

models, allowing modellers to better quantify the uncertainty of 

the design ground motions for each site class. Another 

advantage of directly computing seismic hazard for a 

predefined site class is that non-linear ground-motion effects 

are implicitly considered in the probabilistic hazard framework. 

Finally, GMMs and their coupled amplification functions, 

developed through regression analysis of potentially disparate 

datasets, are less dependent on fully decoupling amplification 

effects (including basin response) from a reference rock site, 

which is implicitly assumed by amplification factors in most 

building codes. 

The utility of VS30 as a proxy for site class and amplification in 

some geological environments has been questioned by several 

researchers [e.g., 92, 93] and this debate should not be 

dismissed. However, this parameter is now pervasive 

throughout the published GMMs, and in the absence of a 

universally accepted alternative, it is the parameter that will be 

continued to be relied upon for future seismic hazard 

assessments. Additionally, the geometry and geophysical 

properties of deep sedimentary basins cannot always be easily 

defined at a national scale. So whilst some GMMs now have 

provisions to estimate shaking intensities for sedimentary 

basins [e.g., 94, 95], they cannot always be applied for national-

scale hazard assessment. 

Alternate Ground-Motion Exceedance Probabilities  

The selection of the 10% exceedance probability in 50 years for 

the first United States (US) National Seismic Hazard Maps was 

originally a rather arbitrary decision and appeared to be a 

“reasonable” choice to ensure structures “remain operable” 

following large earthquakes [96]. This probability level was 

generally viewed to be appropriate for the average recurrence 

of large damaging earthquakes in well-studied ATRs such as 

California, and was also considered suitable for collapse 

prevention. Given that this was best practice for the time, this 

exceedance probability was also adopted by the NCC for use in 

the first edition of the AS1170.4–1993 [97].  

The design probabilities used in building codes are not intended 

to express zero earthquake risk. Because the PSHA method 

explicitly allows for the mapped hazard values to be exceeded, 

it is expected that strong ground shaking will occur where 

mapped hazard is lower than the seismic demands that may be 

experienced at any given site [e.g., 98].  In general terms, a 

1/500 AEP means that in any 50-year period, we should expect 

approximately 10% of the Australian continental landmass to 

experience shaking exceeding mapped values [e.g., 1, 99, 100]. 

This exceedance level is approximately equivalent to a 

fractional area of the continent equivalent to the state of New 

South Wales. As earthquake scientists and engineers, it is 

reasonable to ask whether this exceedance probability level is 

acceptable. 

In the late 1990s, concerns were raised by engineers and 

seismologists in the US that anchoring design hazard values to 

1/475 AEP would result in significant disparities in the seismic 

performance of ordinary-use structures across the country, with 

regions of low-to-moderate levels of seismicity being 

considerably more at risk to extreme ground-motion events 

[e.g., 73, 101, 102]. These concerns led to the adoption of 

seismic design ground-motion demands for a 2% probability of 

exceedance in 50 years (1/2475 AEP) for the IBC. This change 

in the exceedance probability level was adopted in the National 

Building Code of Canada (NBCC) shortly thereafter [103]. The 

1/2475 AEP level is thought to more closely relate to the 

probability of structural collapse for regular structures [76]. 

Whilst this approach had its critics [104, 105], the adoption of 

this ground-motion exceedance probability leads to several 

advantages:  

 In low-to-moderate seismicity regions, there is a larger 

difference between 1/475 and 1/2475 AEP ground-

motions than in more tectonically active regions [e.g., 

106]. Transitioning to lower exceedance probabilities in 

the national design provisions reduces the risk in low-to-

moderate seismicity regions due to rare extreme ground 

motions [68]; 
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 The rate of attenuation of earthquake ground-shaking is 

generally lower in stable continental regions (SCRs) like 

Australia [37, e.g., 107]. Thus, these provisions protect 

against rare events that have the potential to affect larger 

areas than in tectonically active regions; 

 Structures in low-to-moderate seismicity regions would be 

designed with more comparable seismic resistance 

(combined strength and ductility) to structures in high 

seismicity regions; 

 In many cases, effective seismic resistance for new 

construction can be achieved at minimal incremental cost 

[73, 108]. 

Australia has much in common in terms of the vintage of urban 

development and tectonic setting with eastern North America 

[e.g., 109]. Given that both Canada and the United States have 

recognised that 10% probability of exceedance in 50 years does 

not provide seismic protection to extreme ground motions from 

rare events in their low-seismicity settings, it would seem 

sensible that Australia too, should review suitability of the 

probability levels currently required for ordinary-use structures 

by the NCC. This is underscored by the significant reductions 

in its seismic hazard forecasts at the 1/500 AEP through the 

NSHA18 [8]. 

The updated AS1170.4–2007 (R2018) [64] uses the original 

AS1170.4–1993 seismic hazard factors, but now requires a 

minimum design PGA level of 0.08 g. Figure 8 maps the ratio 

of the NSHA18 1/500 and 1/2475 AEP PGA values relative to 

the AS1170.4–2007 (R2018) values. These ratios assume the 

minimum hazard design factor of Z = 0.08 g as recommended 

by the AS1170.4–2007 (R2018) [64]. If we assume a 1/500 AEP 

is appropriate for design and construction in Australia, a 

pragmatist might argue that the current provisions are already 

adequate for all localities (Figure 8a). Therefore, there would 

be little-to-no risk in not updating the underlying hazard maps 

with the modern hazard estimates. However, this all depends on 

whether we, as a community, are comfortable accepting a 10% 

in 50-year exceedance level. If the response is “no”, and we 

now compare the existing provisions required for ordinary-use 

structures with the NSHA18 1/2475 AEP PGA values, we see 

that there are now several localities where the lower-probability 

seismic hazard exceeds that of the current design provisions 

(Figure 8b). Critically, some of these localities include major 

urban centres of Canberra, Melbourne and Adelaide, as well as 

strategically important localities such as Morwell in the Latrobe 

Valley (Victoria) and Port Hedland off the northwest shelf 

(Western Australia). Therefore, these localities could be 

vulnerable to ground-motions from extreme events. In line with 

the AS1170.4–2007 amendment adopted in 2018, minimum 

base shear design values could apply for the remaining low-

hazard jurisdictions should the exceedance probabilities be 

adjusted [e.g., 110].  

The decision to adjust ground-motion exceedance objectives in 

building codes is not solely a scientific question and should be 

established through consultation of not only structural 

engineers and seismic hazard experts, but also community 

leaders, actuaries, sociologists and other decision makers [e.g., 

111, 112]. Another important stakeholder group that is often 

overlooked is the general public, or those who will live and 

work within future buildings. This group of people are often 

unsatisfied when they learn that structures designed to satisfy 

the “life safety” objective, consistent with existing codes, may 

have poor seismic resistance when subjected to strong 

earthquake loading [e.g., 108]. 

It should be noted that neither Canada nor the United States use 

the 2% in 50-year hazard values directly calculated from their 

national-scale probabilistic hazard assessments for defining the 

seismic loading for building design, and use methods such as 

deterministic capping of ground motions for near-fault sites, or 

2/3 of the risk-targeted maximum considered earthquake 

ground motions for assigning design levels [i.e., 68, 113, 114]. 

Nevertheless, the application of these adjustments would still 

yield higher seismic loading requirements, relative to the 

AS1170.4–2007 [9] for many localities across Australia. In 

summary, any considerations for updating future design 

provisions in Australia should carefully consider the ground-

motion exceedance probability required for ordinary-use 

structures and whether the design probabilities meet community 

expectations for seismic safety. 

 

Figure 8: Comparison of seismic hazard design factors at 

AS1170.4 localities illustrating a) the ratio of NSHA18 1/500 

AEP PGA relative to the AS1170.4-2007 (R2018) and b) the 

ratio of NSHA18 1/2475 AEP PGA relative to the AS1170.4-

2007 (R2018) hazard design factors assuming a minimum 

hazard design factor of Z = 0.08 g. 
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Risk-Targeted Ground Motions 

An alternative method to arrive at seismic demands is through 

risk-targeted ground motions. Traditionally, seismic design 

codes rely on maps that provide a “constant hazard” assumption 

where the maximum considered earthquake (MCE) ground 

motions used for design are those that assume a uniform 

exceedance probability (e.g., 2% probability of exceedance in 

50 years) that is constant across a region [111]. However, Luco 

et al. [114] suggested it would be more consistent with the final 

use of seismic design maps to adopt a “constant risk” 

assumption in which the design ground motions are defined to 

provide to a certain level of risk, for example, annual 

probability of collapse. The IBC has specified so-called risk-

targeted maximum considered earthquake (MCER) ground 

motions for designing new buildings and other structures since 

2012. If employed for design purposes, MCER ground motions 

lead to the same nominal collapse probability, or a uniform 

level of risk, over the region of concern [112].  

Maps that indicate the spatial variability of ground-motion 

hazard for a uniform exceedance probability still provide the 

basis for seismic design in most jurisdictions around the world. 

The decision to design structures to a uniform ground-motion 

exceedance level assumes a structure would have the same 

collapse probability in any locality [112]. However, constant 

hazard ground-motion maps do not necessarily lead to uniform 

estimates of collapse probabilities due to differences in the rate 

of change of hazard at different exceedance probabilities (see 

Figure 3) and uncertainties in collapse capacity (e.g., the 

acceleration threshold at the structure’s fundamental period) for 

different structures. Thus, the uniform hazard assumption can 

lead to inequitable risks of collapse over a given time period at 

different localities. It should be noted that the collapse capacity 

for any given structure will be sensitive to several factors, such 

as construction quality, material properties, structural 

irregularities, etc. [114] and it is important to recognise that this 

method refers to a typical structure.  

Risk-targeted MCER ground motions are based on the “risk 

integral” [114]. The key ingredients for risk-targeted 

calculations are: 

 mean ground-motion hazard curves that cover a range of 

exceedance probabilities; 

 fragility (or capacity) curves that express the conditional 

probability of failure at a ground motion level, and;  

 a pre-defined uniform collapse risk objective, or the 

probability of collapse (e.g., 1% in 50 years). 

The integral takes into account the mean hazard curve across a 

range of exceedance probabilities rather than simply basing the 

design ground motions on a single spectral acceleration for a 

pre-defined return period [111]. Consequently, the relative 

slopes of the hazard curves for each site can have a significant 

impact on the MCER ground motions. Incorporating uncertainty 

into the fragility curve is necessary because of variability in the 

performance of structures due to differences in their 

aforementioned construction characteristics [e.g., 114]. 

Fragility curves commonly adopt a lognormal distribution, 

defined by a mean and standard deviation. 

The evaluation of this integral requires that the acceptable risk 

to society be quantified. Again, this is not solely a scientific 

question and it should be established through the consultation 

of a wide cross-section of stakeholders  [e.g., 111, 112]. In the 

US, it was determined by structural engineers that a uniform 

national collapse risk of 1% in 50 years (about 210-4 per 

annum) is an acceptable threshold for use in the IBC. 

Allen and Luco [106] explored the use of the risk-targeted 

hazard approach for Australian localities based on the NSHA18 

calculations. The PGA MCER ground motions for Australian 

localities typically leads to an average hazard reduction factor 

(or “risk coefficient”) of 0.94 relative to MCE ground motions 

[106]. Risk coefficients of this order are consistent with the 

MCER ground motions in the U.S. design maps [82]. 

Nevertheless, it is worth noting that the use of the MCER 

approach using a target collapse risk of 1% in 50 years will 

provide more conservative (i.e., higher) design ground motions 

at most localities than would be achieved by using the NSHA18 

1/500 AEP values [106]. This is because the values are not pre-

conditioned on the choice of a constant hazard objective, but 

rather a constant risk objective. Ultimately, the decision to 

adopt MCER ground motions for future editions of the 

AS1170.4, and at what risk level, should be based on broad 

community consultation. 

FINAL REFLECTIONS 

This contribution discusses some of the challenges facing 

seismic hazard analysis in regions of low seismicity, with 

emphasis on the Australian continental setting. Oftentimes, 

criticisms are misdirected at the PSHA method when, in fact, 

assumptions made during the model-building process are often 

at the heart of the problem [2, 98, 115]. Whilst PSHA aims to 

forecast seismic hazard in terms of a ground motion intensity 

for a given exceedance probability, this can only be achieved 

with sufficient knowledge on the behaviour of past events, both 

historic and neotectonic. As our understanding of earthquake 

occurrences and their ground-motion effects improve (and their 

respective uncertainties reduced), so too will the reliability and 

stability in our seismic hazard forecasts [e.g., 116]. 

Particular challenges for improving the robustness of seismic 

hazard assessments in regions of low seismicity include the 

completeness and quality earthquake catalogues, ground-

motion and seismic-source model characterisation, and their 

influence on seismic hazard estimates. While many of these 

challenges will require ongoing monitoring and research, there 

are several opportunities to improve seismic hazard estimation 

by utilising existing datasets and methods. However, 

philosophical challenges will remain in terms of how to best 

model seismic hazard at different spatial scales for varying 

exceedance probabilities of interest. In the face of these 

challenges and uncertainties, there remain opportunities to 

advance earthquake hazard science for SCRs, such as Australia. 

This will ultimately improve the seismic safety of our 

communities and protect our major infrastructure assets. 

From the perspective of engineering design, several 

opportunities to modernise the manner in which seismic 

demands are considered in Australian building design for future 

editions of the AS1170.4 have been explored. While the 

NSHA18 estimates of hazard have generally decreased on the 

national scale at the 1/500 AEP, there are some localities where 

the AS1170.4–2007 (R2018) may underestimate earthquake risk 

at some key localities relative to the NSHA18, if the 1/2475 

AEP were deemed to be a more appropriate design objective. 

The challenge for the Australian earthquake engineering and 

seismology communities, in addition to other community 

leaders in consultation with the public,  is to determine whether 

we are comfortable accepting a 1/500 AEP where these design 

levels may not be currently providing adequate seismic 

protection for potential MCE ground-motions in some major 

urban centres. 

Alternatively, rather than modifying the ground-motion 

exceedance probabilities using a “constant hazard” assumption, 

the AS1170.4 could move towards ground-motion design values 

that target a uniform collapse probability. Benefits of using the 

so-called risk-targeted MCER ground motions include the 

explicit consideration of whole hazard curves across a range of 
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exceedance probabilities, quantification of collapse prevention 

objectives and mainstreaming the notion of collapse risk into 

earthquake engineering practice. Alternative approaches have 

recently emerged that redefine societal risk in terms of tolerable 

mortality rate as a performance objective in structural design 

codes [i.e., 117], warranting further consideration in mitigating 

the societal impacts of earthquakes.  

We return now to the original question posed in the 

manuscript’s title; does PSHA meet the needs for modern 

engineering design in Australia? The answer to this question 

may be contentious and will depend on the perspectives of the 

individual [e.g., 10]. However, in the author’s opinion, yes, it 

does. PSHA is currently the best method we have to provide 

evidence-based forecasts on the likely ground-shaking 

intensities that may affect a locality within the Australian 

continental setting. 

However, end-users of PSHAs must also recognise the 

uncertainties associated with the method, often driven by 

limitations in data and knowledge. These epistemic 

uncertainties in PSHA are commonly considered and quantified 

through a weighted logic-tree framework that considers 

alternative model branches [e.g., 52, 118]. The improved 

characterisation of modelling uncertainties provides additional 

information regarding the utility and confidence of seismic 

hazard assessments for end users. 

Whilst PSHA in Australia is an imprecise science and will 

continue to have considerable uncertainties into the future, 

these uncertainties will diminish over time as the science 

underpinning the component input models improves. 

Additionally, the PSHA framework enables hazard 

practitioners to include multiple sources of modelled 

uncertainty and to propagate these through to the final (mean) 

hazard result. It is becoming increasingly important to 

communicate the mean hazard results from PSHAs in the 

context of their uncertainties [e.g., 4, 5], ensuring that hazard 

assessments are both transparent and defensible to end users 

and the wider seismological and earthquake engineering 

communities [119, 120]. However, it is also important that the 

right questions are being asked of hazard modellers in terms of 

the provision of seismic demand objectives that are fit for 

purpose in the design and construction of resilient communities 

into the future. 

The opportunities to update earthquake loading provisions 

presented herein use modern approaches and models and follow 

global best practices and evidence-based science for 

determining seismic demands at a given site. Whilst the current 

AS1170.4 (and its requisite exceedance probability) still 

prescribes conservative seismic design for much of Australia 

relative to the NSHA18 results, this paper suggests that there 

are potentially some key localities across the continent where 

the current standards may be non-conservative if an alternative 

hazard (or risk) objective was applied. Therefore, there is strong 

rationale to support the use of these alternative objectives to 

mitigate earthquake risk in regions with low seismicity [e.g., 

68]. Consequently, constructive discussions among Standard 

Australia’s Technical Subcommittee, hazard practitioners and 

end users are suggested to consider alternative hazard and/or 

risk objectives for future editions of the AS1170.4. 
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