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ABSTRACT

Structural health monitoring (SHM) methods provide damage metrics and localisation, but not a means of
answering subsequent questions concerning immediate or long-term damage mitigation, risk, or safety in re-
occupancy. Models based on the SHM results would provide a means to test these issues, but typically require
extensive human input, which is not available immediately after an event to enhance and optimise immediate
decision-making. This work presents a simple, readily automated modelling approach to translate SHM
results from the proven hysteresis loop analysis (HLA) method into foundation models for immediate use.
Experimental data from a 3-storey structure tested at the E-Defense facility in Japan are used to assess model
performance. The model’s ability to capture the essential dynamics is assessed by comparing peak dynamic
displacement and cross correlation coefficient (Reeet). For all 6 events, 3 storeys, and 2 directions, median (5-
95% Range) of peak displacement error was 0.82 (0.17, 4.09) mm, and average Rceert = 0.82, all of which
were significantly improved if the worst event was excluded. Overall, accurate nonlinear, time-varying
baseline models were created using data from SHM damage identification and localisation methods using
relatively quite simple model structures. The method is readily automated via algorithm, and the models were
suitable for initial investigation and analysis on safety, damage mitigation, and thus re-occupancy. Such
models could take SHM from being a tool for damage identification and extend it into further decision-
making, creating far greater utility for engineers and owners, which could further spur impetus for investment

189

in monitoring.

INTRODUCTION

Increasing urbanisation has magnified seismic risk in seismic
zones [1], and the resulting structural damage poses a major risk
with significant social and economic impacts. Structural health
monitoring (SHM) provides methods to detect, localise, and
quantify damage after major events. However, it does no more
than deliver this result to experts who assess risk of further
damage or collapse in subsequent shocks, as well as any need
for immediate or longer-term reinforcement or repair. SHM
thus addresses the most immediate needs of responders and
leadership.

However, SHM does not provide a ready, quantified tool for
assessing these issues or alternatives. A computational model
made from the SHM results, and existing building data or/and
reasonable surrogates, would enable further analyses to
significantly enhance decision-making. However, model
creation can be complex, time consuming, and require
significant human input. Hence, an automated or semi-
automated means of turning SHM results into actionable,
reasonably accurate computational models would provide
potentially significant benefit. More critically, automated
model creation would enable dynamic assessment, potentially
also automated, within minutes or hours, providing better data
to optimise decision and reduce uncertainty.

There is a wide range of SHM methods available in the
literature. Many model-based methods, such as adaptive least
mean squares (LMS) and recursive LMS method [2-5],
extended Kalman filters (EKF) [6-9] and unscented Kalman
filters (UKF) [10-13], identify changes in structural stiffness of
selected baseline model parameters to reflect the severity of
seismic damage. They are also used to identify Eigen-
parameters, such as dynamic frequencies and mode shapes, and

their change over an event. However, there is a significant, but
unknown, risk of a poor identification result when the chosen
model used for SHM does not match the dynamics of the actual
measured system response since the actual outcome is not fully
known [14, 15].

Other model-based methods, such as the Eigensystem
Realization Algorithm [16-20], Flexibility-based methods [21,
22], and finite element model updating method [23, 24] identify
stiffness or Eigen-parameters. These approaches also suffer
from model-based mismatch errors. They also require the entire
measured response to process and are performed off-line after
an event, potentially with significant delay if they require
human input.

Non-parametric SHM methods relate structural inputs and
outputs by a set of equations that may not have explicit physical
meaning [25]. Artificial neural networks (ANN) are one of the
most common in system identification [26-28] and damage
detection [29-32]. However, they can have poor performance
due to training or inability to generalise [33]. Others include
wavelet analysis [34, 35], genetic algorithms [36, 37] and
wireless sensor networks [38, 39]. However, non-parametric
SHM methods cannot locate damage without significant a priori
knowledge of the structure, creating issues in interpreting or
further using the results. Their main advantage is that they are
free or relatively independent of assumed models and thus
suffer less from errors due to poor model selection.

What is needed for automated structural model generation is a
method to accurately identify nonlinear changes in structural
stiffness, which is directly correlated to damage. It must do so
in real-time or near real-time so results are immediately
available. These changes must be available across individual or
a few stories to offer enough damage localization to create a
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useful computational model for evaluating damage severity,
solutions, and mitigation. One method shown to meet these
criteria is the model-free, mechanics-based hysteresis loop
analysis (HLA) method [40-43]. However, as a model-free
method, of which there are several, it does not directly yield a
model to simulate further outcomes.

This study recreates the HLA identified changes in stiffness for
a 3-storey apartment building subjected to 6 ground motion
events on the E-Defense shake table in Japan [44]. These
identified stiffness trajectories are themselves modelled, and
used to create a simplified model of the structure, which could
thus be automatically created after an event. To validate this
model, simulated ground motions are compared to the measured
results, where a good match would indicate.

e The simplified model is able to capture the structural
response well at any point in time during the event, and is
thus a suitable foundation for further analysis of damage
and its immediate or long term mitigation.

e The stiffness values found using HLA for a nonlinear
structural response are accurate assessments of the building.

These outcomes would provide a new tool and approach to use
SHM results to create models to guide decision making, as well
as providing a further more quantified validation of the validity
of HLA results not previously presented.

Regarding novelty, this works utilizes existing HLA based
SHM results with a proposed, relatively simple model creation
method, which together enable easy and simple, and immediate,
assessment of amelioration or potential temporary/permanent
fixes to stiffness reductions. This outcome is a novel, practical
result, as other SHM research stops at damage identification

and localization as the end-point. For model-based SHM, the
model already exists, but may, as noted, suffer inaccuracies in
further analysis if the model does not accurately capture the
structure’s actual response. Thus, this work thus takes the use
of proven, model-free SHM results further to dynamic
modelling to aid decision making.

METHODS

Test Structure and E-Defense Shake Table Tests

A full-scale steel moment resisting frame (SMRF) test structure
in Figure 1. The right building has added oil dampers in the first
storey, and the left is analysed in this work. The three storey’s
have a uniform height of 2870mm. Seismic weights are
171.85kN, 171.85kN and 90kN for the first, second and third
story, respectively. Further structural details are in [44]. Six
earthquake excitations were sequentially applied in all three
(x,y,2) directions with different magnitudes, as listed in Table 1,
at the E-Defense facility in Japan.

Hysteresis Loop Analysis (HLA) and Overall Hypothesis

Hysteresis Loop Analysis (HLA) [40-43] is used to identify
building parameters including elastic and plastic stiffness, and
yielding displacement. The method extracts significant half
cycles of seismic response using sensor data, and extracts linear
elastic and nonlinear plastic stiffness values from the hysteretic
force-displacement response. Yielding displacement is the
maximum deflection prior to plastic deformation, and is thus
not based on assumed structural parameter values or mechanics
in a baseline model. This mechanics relevant, but model-free
approach reduces uncertainty and error [15].

Table 1: Sequential shake table tests and PGA in each direction (x,y,z).

PGA(g)
Test No Input event — — - —
y-direction x-direction  Vertical z-direction
#01 BSL2-18% 0.11 0.13 0.01
#02 Sannomal 0.22 0.16 0.01
#03 Uemachi 0.30 0.35 0.01
#04 Toshin-Seibu 0.62 0.63 0.06
#05 Sannomal 0.21 0.15 0.01
#06 Nankai-Trough 0.87 0.74 0.03
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Figure 1: Photo of E-Defense test structure (left) and plan dimensions showing accelerometer placement (right).



2dy ! Adp ;
' 1 R -\‘51»%’13
U ke
ad] ke
J 1
X6
x‘;

o Turming ponts (velocity 1s zero)
# Breakpoints

Fx)

[ Y

One-segment sub-half cycle | Two-segment sub-half cyele
(r=1) (r=2)
aen) 140x) “ 170%)
/ / -
S5(Xx) 15(X) 5 15(X7)
Three-segment sub-half cycle | Four-segment sub-half cycle
(r=3) (=4)
4X) 4(Xn)
3(xe) 13(X%)
2(Xn)
1{x1) 11{X1)

Figure 2: Examples of how HLA uses half-cycles and
hysteresis loops to identify linear and nonlinear stiffness
values. TOP Left) General nonlinear hysteresis loop for 2
half-cycles of response; TOP Right) A general example of 4
half-cycles of response; BOTTOM) the general example
broken into individual half-cycles with differing numbers of
segments up to r=4 segments.

While the details of the HLA method are presented elsewhere
[40-43], the overall approach in this work undertakes the
following steps:

e Segregate half-cycles of measured response for each
(measured) storey.
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o Create force-displacement hysteresis loops using storey
acceleration and motion for each storey’s inter-storey
motion using the known or estimated story mass.

e Assess up to 4 stiffness values for each of up to 4 segments
in each half-cycle using a statistical test [41] to find the
optimal number of segments, where Figure 2 shows
example cases to illustrate the method.

e Track the trajectory of linear stiffness values (and changes)
over time to assess damage, where nonlinear motion and
deflection are also tracked and provide further assessments
of damage.

The outcome is thus the linear story stiffness trajectory over the
entire ground motion event. Over multiple events, the final
stiffness of one event is within 5% of the initial value of the
subsequent event, as should be expected [43, 44].

This research hypothesizes the linear stiffness trajectory can be
used as the input to a simplified structural model, which can be
automatically created. If valid, the simulation in this model of
the ground motion would yield the same, or very similar,
displacement response metrics as the experimental test. This
outcome would in turn validate the idea of using this model to
rapidly evaluate immediate and longer-term safety and repair
options — a critical first step beyond damage assessment.

Structural Model and Simulation

The structure is a 3-storey apartment building where each storey
is instrumented. The equation of motion chosen for a simplified,
readily automated model of this multi-degree-of-freedom
inelastic structure subjected to earthquake excitation is defined:

Q(V(®) = —MIi,(t) — MV (t) — C(V (L) 1)

where V(t),V(t) and V(t) are displacement, velocity and
acceleration vectors, M is the constant mass matrix, and C(t)
is a Rayleigh damping matrix in this case. Q(V(¢)) is the
nonlinear time-varying restoring force vector determined by the
time-varying structural stiffness matrix K(t) and loading-
unloading path. In particular, the E-Defense test structure is a
three-story SMRF building. Thus, M, K(t), C(t) and
QV(t)) are easily defined:

my 0 0
M= [ 0 m, O ] )
0 0 ms
Ci1 (1) Cy2(t) 0
C(t) = agM + a1 K(t) = |C21(t)  Cp2(8)  Ca3(t) (3)
0 C32(0)  Cs3(t)
Ki(t) + K5 (t) —K;(0) 0
K@) = —K,(®) K@)+ K@) —Ks3() 4
0 —K5(0) K3(t)
Q:(t) 1) = ()
V() = || =LO -0 (5)
Q3(1) f3(t)
f1() = Q1) + Q2(t) + Q5(t)
f2(t) = Q2(t) + Q3(t) (6)

f(8) = Q3(0)

where my;,m, and msare the mas for the first, second and
third story, respectively. K;(t),K,(t) and K;(t) are the
time-varying story stiffness values identified using HLA.
Parameters a, and a; are mass-proportional and stiffness-
proportional damping coefficients based on Rayleigh damping
model using M and K(t) [45], yielding time-varying damping,
C(t). To calculate a, and a,, the damping ratio is assumed to
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be 5% for the first and the highest third modes, respectively.
Thus, the damping ratio for the second mode has a slight smaller
value of 4.4% to satisfy the Rayleigh damping assumption.

It is noted that damping ratio in real structures are not necessary
purely viscous, and change over time and earthquakes, thus
making damping identification problematic. Thus, the Rayleigh
damping model might not yield an accurate estimation of the
true damping force, particularly for a nonlinear structure.
However, the prior study has shown the damping force is a
relatively small part of the total damping force in the elastic
segments [44]. Therefore, assuming a damping ratio of 5% for
Rayleigh model typically used in spectral design analyses to
approximately add damping effect in the total restoring force
can still yield a reasonable change of stiffness for damage
indication and health monitoring [44, 45], although further
study on the assessing the real coupled damping effect should
be investigated with a more complex nonlinear model.

Finally, f,(t), f2(t) and f;(t) are the net hysteretic restoring
forces on each floor based on f = K(t)*V(t), which thus define
the elements of the vector, Q, or Q;,3(t) the nonlinear
restoring forces for each storey. Figure 3 shows the simplified
model, where it is clear such a modelling approach could be
automated given identified K(t) values, mass M, and measured
displacements and accelerations.
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Figure 3: Simplified model structure and degrees of freedom
used in both x and y directions, where the experimental
structure did not have torsional response [44], which could
be included as required.

Importantly, the model of Equations (1)-(5) is nonlinear with a
time-varying stiffness and damping component varying with
the identified stiffness changes, as seen specifically in
Equations (3)-(4). Thus, the model structure is relatively quite
simple, while containing potentially significant nonlinearity.
Such a simple model is important, as initial decision-making
will require an overall approach, and thus a detailed analysis
may not be necessary or possible.

Equally importantly, the model structure itself cannot be any
more “dense” than the measurement density. In this case, the
structure was measured at a story level in multiple directions.
Thus, a model at story level should be considered appropriate.
Given there was little torsion observed, the actual analysis
utilizes two such models, one for each of the x and y directions.
Overall, the model used thus matches the sensor density in
terms of relevant response degrees of freedom, and, in turn,
dictates the complexity of the model created.

The next step is to turn identified trajectories of storey stiffness,
K(t), in both x and y directions into simplified functions of time
for ready model simulation. Figures 4 and 5 show the identified
storey stiffness trajectories over all six events in both x-
direction and y-direction, respectively. Significant stiffness
drops were identified for event 4 in both directions due to the
much stronger input PGA of test #4 as listed in Table 1. In
addition, the major stiffness change for event 4 occurs
approximately between 12.5~15 seconds in Figures 4 and 5,
corresponding to the strong shaking of the ground motion [44].
Stiffness trajectories were lightly smoothed using either a
moving average or a wavelet filter [44]. While both versions are
very similar, it is important to note the final stiffness values for
each event are within 5% of the next event’s initial identified
stiffness value. This event-to-event consistency and accuracy is
evident for each storey and event in both directions.

Linear functions are used to simply and algorithmically convert
Figures 4 and 5 into readily simulated K(t) functions for each
storey, as a series of linear lines. Changes less than 5% are
considered constant. It assumes stiffness changes occur over a
finite time, where linear lines are simple, reasonable
approximations, readily created automatically via simple
algorithms from the HLA results in Figures 4 and 5. Figure 6
shows an example using 3 segments for the 1%t story in x
direction during Event 1. Table 2 shows the number of segments
used in each story and event.

Table 2: Linear approximation of stiffness evolution for all 6 events and both (x,y) directions in Figures 4 and 5.

x-direction y-direction
Event
1%t story 2" story 3 story 15t story 2nd story 3" story
#01 3 3 1 3 3 1
#02 3 3 3 3 3 1
#03 3 1 3 1 3 1
#04 4 4 4 4 4 4
#05 1 1 1 1 1 1
#06 4 4 4 4 4 4
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Figure 4: ldentified evolution of effective elastic stiffness (ke) in the x-direction over events. The solid line km represents the
moving average stiffness and the dashed line kw represents the wavelet stiffness, from [44].
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Figure 6: Example of linear approximation for the 1% story
in x-direction during Event#1.

Analyses and Evaluation

Simulations use the Newmark-Beta method and a 0.005
seconds time step matching the experimental sampling rate. All
six events are simulated using the model of Equations (1)-(6).
Simulation responses are compared to measured time history
responses, where differences would be due to the simple,
readily automated model constructed and/or any error in the
identified K(t) profiles. The results thus assess both the
accuracy of the simple model creation method presented and
provide an overall validation of the stiffness values found by
the HLA method:

Two metrics compare simulated and measured response for all
events (6), stories (3), directions (x, y):

e Peak Absolute Displacement Error: A metric associated
with structural damage.

e Correlation Coefficient (Rcoeff): A metric capturing
whether the two displacement responses compared have the
same specific shape over time. It is more rigorous than the
typically used average absolute error as it includes accuracy

in point to point changes in the displacement responses over
time. A value of 1.0 indicates a perfect match in magnitude
at each point and a value of 0.0 the worst. Given differences
in peak displacements, a value over 0.7-0.8 would be very
good qualitatively when plotted.

These metrics assess the quality of the simple model, which can
be automatically created, to match the structural response using
the identified K(t). As noted, a good match would validate the
approach to generating models for further decision making from
SHM results, as well as providing further validation of the HLA
identified stiffness values.

Finally, a damping coefficient of 5% for the first and third
modes was assumed using Rayleigh damping, leading to a time
varying damping matrix based on how stiffness changed over
time. The choice of 5% is arbitrary and commonly used [45].
However, a sensitivity analysis for different damping values is
performed comparing correlation coefficients for each value to
quantify its impact.

RESULTS AND DISCUSSION

Table 3 shows peak absolute errors for each event (#1-6),
direction (x,y) and storey (1-3), where error estimating
displacements from experimental accelerometer and other
measurements is 0.5-1.0 mm depending on magnitude for the
method used here [41, 46]. Figure 7 shows the 3 storey x and
y displacement responses, measured and simulated, for all 6
events during periods of strong motion. Finally, Table 4 shows
the correlation coefficients for each event.

Table 3 has median [75™ percentile] absolute errors of 0.84
[1.99] mm. The median is within estimation error, where 21 of
36 are less than 1.0 mm and the 75™ percentile is relatively
small. The 90" percentile error is 2.96 mm. Thus, the overall
peak response is captured well, although not perfectly.

Table 3: Peak absolute displacement error (mm) between simulated and measured response for all 3 storey’s and all 6 events in
both x and y directions.

x-direction y-direction
Event
15t story 2nd story 3 story 1%t story 2nd story 3 story
#01 0.17(2.3%) 0.01(0.2%) 0.39(16.3%) 0.30(4.6%) 0.21(2.3%) 0.77(20.6%)
#02 0.84(12.3%)  0.46(8.9%) 0.67(23.0%) 0.70(8.5%) 0.15(2.1%) 0.19(4.0%)
#03 0.50(2.8%) 0.87(11.8%) 1.09(17.1%) 2.09(19.6%) 1.30(14.4%) 0.70(14.8%)
#04 2.96(6.6%) 3.96(12.0%) 2.32(11.6%) 6.27(14.1%) 2.34(5.9%) 4.49(15.6%)
#05 1.02(10.4%) 0.54(7.8%) 0.39(10.1%) 0.93(5.7%) 0.80(5.8%) 0.48(5.2%)
#06 2.58(4.7%) 2.96(6.9%) 3.82(14.8%) 1.19(3.1%) 1.99(6.0%) 0.43(1.9%)

Table 4: Correlation coefficients, Reeeff, for all events, storeys and directions, including mean value across all storeys and

directions.
x-direction y-direction X&Y
Event

1%t story 2nd story 31 story 1%t story 2nd story 3 story Mean

#01 0.89 0.86 0.85 0.93 0.91 0.87 0.89
#02 0.91 0.88 0.81 0.82 0.82 0.72 0.83
#03 0.82 0.77 0.77 0.62 0.60 0.72 0.72
#04 0.88 0.84 0.80 0.81 0.79 0.75 0.81
#05 0.89 0.86 0.79 0.86 0.86 0.79 0.84
#06 0.87 0.84 0.80 0.89 0.88 0.83 0.85
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Figure 8: Third storey displacement over the strong motion for each of the 6 events (top to bottom) to show qualitative model
comparison in both x (left) and y (right) directions, where blue dashed lines are the experimental measurements. The linear
estimation of the model is used in this case. Note x and y axis scales are different between events.

In all cases, the modelled motion is a good match for the
measured motion with correlation coefficients averaging 0.72-
0.89 (0.82 overall) for all storeys, directions, and events. The
third ground motion input is the worst with Reeett = 0.71, and
eliminating it raises the average to 0.85. Qualitatively, in Figure
7, the worst case for the third storey, and in general (results not
shown), is the x-direction for Event #6 where there are clear
underestimations of motion, which is reflected in the relatively
lower Reoetf = 0.80 in Table 4 and larger 3.82mm differences
seen in peak values in Table 3. It is still important to notice the
record is long and much of it matches well, although not as
visibly well for portions.

This relatively poorer result in the x-direction for Event #6 is
offset by qualitatively very good results for the y-direction with
slightly higher Reoett = 0.83 in Table 4. This comparison shows
there may be differences in the simplified model chosen and the
actual structure, as should be expected. However, these
differences are not enough to alter what are otherwise
qualitatively good correlation results, where it is important to
reiterate the correlation coefficient is a more rigorous test of
accuracy than any single point or group of points comparison.

By further comparison, the correlation coefficients for Event #6
are much better than the worst case Event #3, despite what
might appear in Figure 7 to be a better overall qualitative match



for Event #3. In this case, in Figure 7, Event #3 tracks very well
despite not hitting some peak values as well. However, the point
to point correlation of changes, the shape of the response, is not
as good. This difference thus highlights not only model
goodness, but also the impact of metrics chosen.

More specifically, using the correlation coefficient places value
on the step-to-step shape of the response over time. It thus has
lesser weight for peak values, which may also be important.
Thus, this analysis uses Table 3 to provide a damage related
metric of model fit and goodness. In turn, Table 4 and the
correlation coefficient evaluates the model’s overall quality in
capturing dynamics. Together, they provide an overall view of
the model’s capability to represent the structure. More
succinctly, all models and modelling approaches have
advantages and limitations, and these different metrics used in
this work provide a contrast across this range of ways to assess
model function and capability.

Figure 9 shows the impact of the choice of damping ratio from
5-20% on the average correlation coefficient for each event. As
with the prior results, Event #3 was the lowest overall followed
by Event #4. Assuming a value of Reoetr = 0.80 as a minimum,
excluding Event #3, then values of 8% and 10% offered slight
improvements in correlation coefficient. These results first
suggest the choice of 5% is conservatively low, but acceptable.
Second, the choice of damping value plays a lesser role in how
well this simplified modelling approach captures the resulting
dynamics. Using a “best” value of 8% raised the overall average
correlation coefficient to Reoett = 0.87, which is not significantly
higher than Reoeft = 0.82 (Reoett = 0.82 without Event #3) found
for the initial, typical 5% value chosen.
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Figure 9: Average correlation coefficient for each event as a
function of damping ratio chosen.

Combining all these results shows the simplified modelling
approach provides a good and functional model on which
further mitigation or other analyses could be based. The method
is very simple to create and could thus be readily automated.
Hence, the outcome SHM result using the HLA method is not
only damage and localisation, but can also include reasonable
baseline dynamic models for further analysis and assessment.

In terms of limitations it is important to note, while the specific
method presented is simple enough to be automated, far more
complex models could be readily generated. However, the
ability to automate more complex model generation would be
reduced. Thus, more complex modelling approaches could
reduce the method’s generalisability and likely require human
input where automation could have the result ready in near real-
time. Equally, the model density of degrees of freedom would
likely exceed the measured density and would thus have to rely
on assumptions of validity for motions in between those points,
which could offer insight, but also risk in terms of model
validity.

That all said, a more complex model than the simple shear
structure of 3 degrees of freedom used here could possibly
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produce better results with minimal added effort. In this case,
the model structure choice was made as simple as possible to
demonstrate the potential of the approach. A more detailed
analysis would be required to assess how simple or complex a
model might be required for a given case, where this analysis
shows the potential for a real structure.

However, and equally importantly, the relatively quite simple
three degree of freedom models used here for each direction,
captured the data very well, and thus a main outcome of the
analysis is also how well such a relatively quite simple can
perform when given the proper nonlinear inputs for stiffness
changes. In this case, the model is almost absurdly simple, yet
matches data very well. This outcome indicates the validity of
the SHM method, as well as the need for little additional
complexity in subsequent, initial model generation. In further
analysis, one could of course add additional nonlinearities for
better future prediction.

Equally, the linear damage approach is simple and provided
good results. These results indicate the losses of lateral story
stiffness for this 3-story E-Defense real building can be well
identified and further used as damage indices in future health
monitoring for a quick decision, considering the overall
approach can be done within a few seconds with this simplified
foundation model. However, a more accurate or complex
realisation of the time-varying stiffness in Figure 4 might have
resulted in a more accurate outcome, where errors in peak
displacement in Table 3 might have been lower with a more
accurate representation of the change in stiffness due to
damage.

Again, there is a potential trade off and compromise amongst
increasing complexity, increasing accuracy, and simplicity /
automation [47]. A more complex model would yield a more
accurate results, while it would require more a-prior knowledge
of the structure and engineering analysis, take much longer time
to process, and may also suffer the identifiably and model
mismatch issues [15, 48]. In this case, the results were
considered “good enough”. However, the real assessment of
accuracy is a function of the eventual outcome use intended,
which was not the scope of this work.

The overall results show the potential and limitation of using a
simplified model with HLA SHM results for automated
modelling and dynamic analysis when applied to a real
apartment building structure. The major limitation of the simple
model is the lack of its ability to represent the exact nonlinear
behaviour for detailed structural elements and/or complex
modal response, but provides the estimates of the fundamental
dynamics of the lateral vibration. Structures with a more
complex nonlinear behaviours would require a more degrees of
freedom and complex hysteretic model to represent the
significant dynamics, which in turn requires a more complex
and dense instruments. Therefore, a future work would be
needed to investigate how complex a model should be choose
with limited number of sensors.

Finally, regarding the relative importance of this work, here are
many model-based SHM methods (e.g. [2-4, 6-13, 16-24]). In
these cases, the model is at the heart of the SHM method and
simulating the identified model will provide a response as good
as the identification fit. However, and very importantly, if the
model chosen is not a good match, the identification will be
inaccurate [14, 15]. In this case, one has a good model in terms
of replication, but the damage identification is inaccurate or
misleading. This latter issue is critical as it means any use of the
model to evaluate damage mitigation for safety or re-occupancy
will be in error, potentially significantly so.

Because the HLA method is model-free, it requires some form
of model creation approach to provide further value beyond
damage localization and quantification. There are several
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model-free approaches (e.g. [25-32, 34, 35]). Such an approach
would potentially work with some of these SHM methods, as
well. However, a similar approach could be used to assess the
potential with other SHM methods. Hence, one main novelty
and outcome of this work is the ability of the approach to
generate an accurate valid model, which in turn can enable
better decision-making post-event and serve as a baseline on
which to build further models for more in-depth analysis and
decisions.

There is thus a contradiction between the identification
approach used for SHM and the possible end-uses. Equally, the
limitations of the approach, such as model-based SHM error
due to a mismatch in structural model and monitored structure
behaviour, trade off with the same end uses. This work thus
utilises the HLA method as it is model-free, avoiding these
model-method mismatch issues, but also because of its proven
accuracy and consistency across multiple events experimentally
and as quantified analytically [40-44, 46, 49-51], where, to date,
no other method has demonstrated both its accuracy and its
consistency over multiple events.

These issues are little to not-at-all discussed in the SHM
community. There is thus a strong and growing need to consider
these alternatives and issues in developing effective SHM and
extending its use, efficacy, and thus benefit.

CONCLUSIONS

This paper presents a simplified model creation method for use
with model-free structural health monitoring methods. The goal
is to create accurate baseline models using data from SHM
damage identification and localisation methods to create
models suitable for further investigation and analysis on safety,
damage mitigation, and thus re-occupancy. Such models would
take SHM from being a tool for damage identification and
extend them into further decision-making, creating far greater
utility for engineers and owners, which could further spur
impetus for investment in monitoring.

The specific method presented is validated against experimental
data from the E-Defense facility in Japan for a 3-storey
apartment structure subjected to six events and suffering
significant damage in some but not all events. Comparison of
model results to the experimental data shows qualitatively good
matches for peak displacements and correlation coefficients,
where the first metric assesses damage and design related
outcomes, and the second assesses how well the overall
structure dynamics are captured. In general, results were very
good and demonstrate a good baseline model can be generated
for immediate use and longer-term evaluation of structural
outcomes and mitigation.

A further main outcome is that a relatively simple model
structure can yield a reasonable accuracy of the replicated
response with nonlinearities in a given strong earthquake input
for a real structure, validating the potential of this simple model
generation to provide an near-real time dynamic analysis for
decision making, as well as extending to a more complex model
creation. However, the method still remains to be further
validated for combined soil-structure system and/or other
scenarios in a real application, in which more complex
dynamics and higher mode response might be coupled in the
vibration.

In terms of limitation, the effect of soil-structure interaction
(SSI) is not considered in the dynamic modelling and analysis
for the proposed algorithm. Such SSI might have significant
effect on structure damping, period and thus response spectrum,
particularly for very soft soil condition. These effects were
quantified in a large series of Monte Carlo analyses by
Moghaddasi et al quantifying the risk of exceedance in
predicted response (or reduction) due to SSI effects with
moderate and soft soils for linear and nonlinear structures [52-

56]. This series of detailed analyses show the response
compared to fixed base assumptions is similar or smaller at least
75-85% of the time, but for ~ 5-10% of cases, the risk of even
larger displacements and response occurs due to SSI effects and
soft soils. However, such simulation analysis does not
necessary represent the true reality of SSI effect. Thus, the
method still remains to be fully validated using real building
data under different soil conditions. Equally, given the
requirement of a ground motion measurement at the structural
foundation, the “true input” to the structure, including
modification due to SSI, is incorporated in both the HLA
identification, as well as in the input for any future events.
Overall, the robustness of the HLA method and this automated
modelling approach for accurate prediction under soft soil
conditions still remains to be completely validated before a
pragmatic application in these types of sites.

The method is simple and generalizable. It can be readily
extended to more complex models or other similar approaches
using different modelling approaches depending on the sensor
density and resolution of SHM results. Future work should
also consider extending these methods to creating far more
predictive, nonlinear models if possible, especially given the
Christchurch series of earthquakes where major shocks were
followed by almost equally large second shocks.
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APPENDIX A. HLA EXAMPLE

A single degree of freedom system was excited using f(t), as
shown in Figure A-1. The parameters for the system are set in
Table A-1. Figure A-2 shows the hysteresis loop of the
simulated system under 1.5 cycles excitation f(t). Here we
added 10% RMS noise to the simulated data.
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Then we start to identify the pre-yielding stiffness (ke), the post-
yielding stiffness (kp) and cumulative plastic deformation
(Adp) using the proposed method step by step, as shown in
Figure A-3.

Table A-1: Set of parameters.

Mass Post-yielding stiffness Pre-yielding stiffness Yield displacement Damping ratio
1 1 0.1 1 5%

1
X(t) o8
08
K 0.4
M —> =5 °
0.4
Q Q
08F

g 2 10

Time (s)

Figure A-1: Simulated system.

L5 :

Restoring force
o

-1.5 -

24 3 2 1

0 1 2

Displacement

Figure A-2: Hysteresis loop of the simulated system.
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According to zero velocity, divide the hysteresis loop
in Figure 2 into sub half-cycles #1, #2 and #3.

[Sub-half cyele #2

—

e

v

Assume r=3; compute F(4/3) for sub-half cycles #1,
#2 and #3 and identify /=4 by F(4/3) > =18.66:

Sub-half cycle #1: F(4]3)=4.9< =18.66, not =4
Sub-half cycle #2: F(4[3)=4.7< =18.66, not =4

Sub-half cycle #3: F(4]3)=3.9< =18.66, not r=4

v

The unidentified sub-half cycles (#1, #2 and #3).

\

Assume r=2; compute F(3|2) for sub-half cycles #1,
#2 and #3 and identify »=3 by F(3]2) > =17.98:

Sub-half cycle #1: F(312)=5.6<=17.98, not =3
Sub-half cycle #2: F(3|2)=3.3< =17.98, not r=3

Sub-half cycle #3: F(32)=5.8<=17.98, not ¥=3

v

The unidentified sub-half cycles (#1, #2 and #3 ).

Y

Assume r=1; compute F{2|1) for sub-half cycles #1,
#2 and #3; identify =2 by F(2/1) > =16.64 and
identify r=1 by F(2|1) <=16.64:

Sub-half cycle #1: F(2|1)=373.3>=16.64, =2
Sub-half cycle #2: F(2|1)=437.9>=16.64, r=2

Sub-half cycle #3: F(2|1)=4.9< =16.64, r=1

sub-half eyele#2
—»

e |

L ——— ‘i
-L.8 cycle#3 ‘
0 2 4 6 8 10
Lime (s)

—— | Nor=4identified |--,

—— | Nor=3identified |--

Sub-half cycles #1
and #2 identified as

—| =2

Sub-half cycles #3
identified as r=1.

Use an overall least squares method to compute the breakpoints and the regression

coefficients of identified sub-half cycles:

#1: 2,=1.002, b,=0.003, 2,=0.107, b,=0.882, X, =1.005, X,=1.876

#2: 2,=1.000, 5,=-0.791, a,=0.101, b,=-0.900, X,,=-0.115, X, =3.119

#3: 2,=1.015, b,=1.949

Final estimates: &, =( k 1+ &2+ £,3)/3=1.005; k, =( &, 1+ £,2)/2=0.104; Ad, =d1+d2=3 875

-02D

13

of
~

05

0.5

05

Sub-half cycle #2

y=al*x+bl

y=a2*x+b2 Xil

02

0.2

0.4

0.6

-0.8

Sub-half cycle 43

A 4

Estimate physical parameters &, k, and Ad,:
#likl=a, kl=a), dl=|X, - X,|
#20k2=ay, k2=, d2=|X, - X

#3: kJ3=a;

Final estimates:

k, =(k 1+ k,2+ k,3)/3=1.005;

K, =(k, 1+ k,2)/2=0.104;

Ad, =d1+d2=3 875

Figure A-3: Flowchart of HLA Implementation.




