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ABSTRACT 

Structural health monitoring (SHM) methods provide damage metrics and localisation, but not a means of 

answering subsequent questions concerning immediate or long-term damage mitigation, risk, or safety in re-

occupancy. Models based on the SHM results would provide a means to test these issues, but typically require 

extensive human input, which is not available immediately after an event to enhance and optimise immediate 

decision-making. This work presents a simple, readily automated modelling approach to translate SHM 

results from the proven hysteresis loop analysis (HLA) method into foundation models for immediate use. 

Experimental data from a 3-storey structure tested at the E-Defense facility in Japan are used to assess model 

performance. The model’s ability to capture the essential dynamics is assessed by comparing peak dynamic 

displacement and cross correlation coefficient (Rcoeff). For all 6 events, 3 storeys, and 2 directions, median (5-

95% Range) of peak displacement error was 0.82 (0.17, 4.09) mm, and average Rcoeff = 0.82, all of which 

were significantly improved if the worst event was excluded. Overall, accurate nonlinear, time-varying 

baseline models were created using data from SHM damage identification and localisation methods using 

relatively quite simple model structures. The method is readily automated via algorithm, and the models were 

suitable for initial investigation and analysis on safety, damage mitigation, and thus re-occupancy. Such 

models could take SHM from being a tool for damage identification and extend it into further decision-

making, creating far greater utility for engineers and owners, which could further spur impetus for investment 

in monitoring. 

 

INTRODUCTION 

Increasing urbanisation has magnified seismic risk in seismic 

zones [1], and the resulting structural damage poses a major risk 

with significant social and economic impacts. Structural health 

monitoring (SHM) provides methods to detect, localise, and 

quantify damage after major events. However, it does no more 

than deliver this result to experts who assess risk of further 

damage or collapse in subsequent shocks, as well as any need 

for immediate or longer-term reinforcement or repair. SHM 

thus addresses the most immediate needs of responders and 

leadership.  

However, SHM does not provide a ready, quantified tool for 

assessing these issues or alternatives. A computational model 

made from the SHM results, and existing building data or/and 

reasonable surrogates, would enable further analyses to 

significantly enhance decision-making. However, model 

creation can be complex, time consuming, and require 

significant human input. Hence, an automated or semi-

automated means of turning SHM results into actionable, 

reasonably accurate computational models would provide 

potentially significant benefit. More critically, automated 

model creation would enable dynamic assessment, potentially 

also automated, within minutes or hours, providing better data 

to optimise decision and reduce uncertainty.  

There is a wide range of SHM methods available in the 

literature. Many model-based methods, such as adaptive least 

mean squares (LMS) and recursive LMS method [2-5], 

extended Kalman filters (EKF) [6-9] and unscented Kalman 

filters (UKF) [10-13], identify changes in structural stiffness of 

selected baseline model parameters to reflect the severity of 

seismic damage. They are also used to identify Eigen-

parameters, such as dynamic frequencies and mode shapes, and 

their change over an event. However, there is a significant, but 

unknown, risk of a poor identification result when the chosen 

model used for SHM does not match the dynamics of the actual 

measured system response since the actual outcome is not fully 

known [14, 15].  

Other model-based methods, such as the Eigensystem 

Realization Algorithm [16-20], Flexibility-based methods [21, 

22], and finite element model updating method [23, 24] identify 

stiffness or Eigen-parameters. These approaches also suffer 

from model-based mismatch errors. They also require the entire 

measured response to process and are performed off-line after 

an event, potentially with significant delay if they require 

human input. 

Non-parametric SHM methods relate structural inputs and 

outputs by a set of equations that may not have explicit physical 

meaning [25]. Artificial neural networks (ANN) are one of the 

most common in system identification [26-28] and damage 

detection [29-32]. However, they can have poor performance 

due to training or inability to generalise [33]. Others include 

wavelet analysis [34, 35], genetic algorithms [36, 37] and 

wireless sensor networks [38, 39]. However, non-parametric 

SHM methods cannot locate damage without significant a priori 

knowledge of the structure, creating issues in interpreting or 

further using the results. Their main advantage is that they are 

free or relatively independent of assumed models and thus 

suffer less from errors due to poor model selection. 

What is needed for automated structural model generation is a 

method to accurately identify nonlinear changes in structural 

stiffness, which is directly correlated to damage. It must do so 

in real-time or near real-time so results are immediately 

available. These changes must be available across individual or 

a few stories to offer enough damage localization to create a 
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useful computational model for evaluating damage severity, 

solutions, and mitigation. One method shown to meet these 

criteria is the model-free, mechanics-based hysteresis loop 

analysis (HLA) method [40-43]. However, as a model-free 

method, of which there are several, it does not directly yield a 

model to simulate further outcomes. 

This study recreates the HLA identified changes in stiffness for 

a 3-storey apartment building subjected to 6 ground motion 

events on the E-Defense shake table in Japan [44]. These 

identified stiffness trajectories are themselves modelled, and 

used to create a simplified model of the structure, which could 

thus be automatically created after an event. To validate this 

model, simulated ground motions are compared to the measured 

results, where a good match would indicate. 

 The simplified model is able to capture the structural 

response well at any point in time during the event, and is 

thus a suitable foundation for further analysis of damage 

and its immediate or long term mitigation.  

 The stiffness values found using HLA for a nonlinear 

structural response are accurate assessments of the building. 

These outcomes would provide a new tool and approach to use 

SHM results to create models to guide decision making, as well 

as providing a further more quantified validation of the validity 

of HLA results not previously presented. 

Regarding novelty, this works utilizes existing HLA based 

SHM results with a proposed, relatively simple model creation 

method, which together enable easy and simple, and immediate, 

assessment of amelioration or potential temporary/permanent 

fixes to stiffness reductions. This outcome is a novel, practical 

result, as other SHM research stops at damage identification 

and localization as the end-point. For model-based SHM, the 

model already exists, but may, as noted, suffer inaccuracies in 

further analysis if the model does not accurately capture the 

structure’s actual response. Thus, this work thus takes the use 

of proven, model-free SHM results further to dynamic 

modelling to aid decision making. 

METHODS 

Test Structure and E-Defense Shake Table Tests 

A full-scale steel moment resisting frame (SMRF) test structure 

in Figure 1. The right building has added oil dampers in the first 

storey, and the left is analysed in this work. The three storey’s 

have a uniform height of 2870mm. Seismic weights are 

171.85kN, 171.85kN and 90kN for the first, second and third 

story, respectively. Further structural details are in [44]. Six 

earthquake excitations were sequentially applied in all three 

(x,y,z) directions with different magnitudes, as listed in Table 1, 

at the E-Defense facility in Japan.  

Hysteresis Loop Analysis (HLA) and Overall Hypothesis 

Hysteresis Loop Analysis (HLA) [40-43] is used to identify 

building parameters including elastic and plastic stiffness, and 

yielding displacement. The method extracts significant half 

cycles of seismic response using sensor data, and extracts linear 

elastic and nonlinear plastic stiffness values from the hysteretic 

force-displacement response. Yielding displacement is the 

maximum deflection prior to plastic deformation, and is thus 

not based on assumed structural parameter values or mechanics 

in a baseline model. This mechanics relevant, but model-free 

approach reduces uncertainty and error [15]. 

Table 1: Sequential shake table tests and PGA in each direction (x,y,z). 

Test No Input event 
PGA(g) 

y-direction x-direction Vertical z-direction 

#01 BSL2-18% 0.11 0.13 0.01 

#02 Sannomal 0.22 0.16 0.01 

#03 Uemachi 0.30 0.35 0.01 

#04 Toshin-Seibu 0.62 0.63 0.06 

#05 Sannomal 0.21 0.15 0.01 

#06 Nankai-Trough 0.87 0.74 0.03 

 

 

Figure 1: Photo of E-Defense test structure (left) and plan dimensions showing accelerometer placement (right). 
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Figure 2: Examples of how HLA uses half-cycles and 

hysteresis loops to identify linear and nonlinear stiffness 

values. TOP Left) General nonlinear hysteresis loop for 2 

half-cycles of response; TOP Right) A general example of 4 

half-cycles of response; BOTTOM) the general example 

broken into individual half-cycles with differing numbers of 

segments up to r=4 segments. 

While the details of the HLA method are presented elsewhere 

[40-43], the overall approach in this work undertakes the 

following steps: 

 Segregate half-cycles of measured response for each 

(measured) storey.  

 Create force-displacement hysteresis loops using storey 

acceleration and motion for each storey’s inter-storey 

motion using the known or estimated story mass. 

 Assess up to 4 stiffness values for each of up to 4 segments 

in each half-cycle using a statistical test [41] to find the 

optimal number of segments, where Figure 2 shows 

example cases to illustrate the method. 

 Track the trajectory of linear stiffness values (and changes) 

over time to assess damage, where nonlinear motion and 

deflection are also tracked and provide further assessments 

of damage. 

The outcome is thus the linear story stiffness trajectory over the 

entire ground motion event. Over multiple events, the final 

stiffness of one event is within 5% of the initial value of the 

subsequent event, as should be expected [43, 44]. 

This research hypothesizes the linear stiffness trajectory can be 

used as the input to a simplified structural model, which can be 

automatically created. If valid, the simulation in this model of 

the ground motion would yield the same, or very similar, 

displacement response metrics as the experimental test. This 

outcome would in turn validate the idea of using this model to 

rapidly evaluate immediate and longer-term safety and repair 

options – a critical first step beyond damage assessment.  

Structural Model and Simulation 

The structure is a 3-storey apartment building where each storey 

is instrumented. The equation of motion chosen for a simplified, 

readily automated model of this multi-degree-of-freedom 

inelastic structure subjected to earthquake excitation is defined: 

𝑄(𝑉(𝑡)) = −𝑀𝐼𝑥̈𝑔(𝑡) − 𝑀𝑉̈(𝑡) − 𝐶(𝑡)𝑉̇(𝑡) (1) 

where 𝑉(𝑡), 𝑉̇(𝑡)  and 𝑉̈(𝑡)  are displacement, velocity and 

acceleration vectors, M is the constant mass matrix, and 𝐶(𝑡) 

is a Rayleigh damping matrix in this case. 𝑄(𝑉(𝑡)) is the 

nonlinear time-varying restoring force vector determined by the 

time-varying structural stiffness matrix 𝐾(𝑡)  and loading-

unloading path. In particular, the E-Defense test structure is a 

three-story SMRF building. Thus,  𝑀, 𝐾(𝑡), 𝐶(𝑡)  and 

𝑄(𝑉(𝑡)) are easily defined: 

𝑀 = [

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] (2) 

𝐶(𝑡) = 𝑎0𝑀 + 𝑎1𝐾(𝑡) = [

𝐶11(𝑡) 𝐶12(𝑡) 0

𝐶21(𝑡) 𝐶22(𝑡) 𝐶23(𝑡)
0 𝐶32(𝑡) 𝐶33(𝑡)

] (3) 

𝐾(𝑡) = [

𝐾1(𝑡) + 𝐾2(𝑡) −𝐾2(𝑡) 0

−𝐾2(𝑡) 𝐾2(𝑡) + 𝐾3(𝑡) −𝐾3(𝑡)
0 −𝐾3(𝑡) 𝐾3(𝑡)

] (4) 

𝑄(𝑉(𝑡)) =  [

𝑄1(𝑡)

𝑄2(𝑡)
𝑄3(𝑡)

] = [

𝑓1(𝑡) − 𝑓2(𝑡)

𝑓2(𝑡) − 𝑓3(𝑡)

𝑓3(𝑡)
] (5) 

𝑓1(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡) + 𝑄3(𝑡)                  

𝑓2(𝑡) = 𝑄2(𝑡) + 𝑄3(𝑡)                         

𝑓3(𝑡) = 𝑄3(𝑡)                                

 (6) 

where 𝑚1, 𝑚2 and 𝑚3are the mas for the first, second and 

third story, respectively. 𝐾1(𝑡), 𝐾2(𝑡)  and 𝐾3(𝑡)  are the 

time-varying story stiffness values identified using HLA. 

Parameters 𝑎0  and 𝑎1  are mass-proportional and stiffness-

proportional damping coefficients based on Rayleigh damping 

model using M and K(t) [45], yielding time-varying damping, 

C(t). To calculate 𝑎0 and 𝑎1, the damping ratio is assumed to 
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be 5% for the first and the highest third modes, respectively. 

Thus, the damping ratio for the second mode has a slight smaller 

value of 4.4% to satisfy the Rayleigh damping assumption. 

It is noted that damping ratio in real structures are not necessary 

purely viscous, and change over time and earthquakes, thus 

making damping identification problematic. Thus, the Rayleigh 

damping model might not yield an accurate estimation of the 

true damping force, particularly for a nonlinear structure. 

However, the prior study has shown the damping force is a 

relatively small part of the total damping force in the elastic 

segments [44]. Therefore, assuming a damping ratio of 5% for 

Rayleigh model typically used in spectral design analyses to 

approximately add damping effect in the total restoring force 

can still yield a reasonable change of stiffness for damage 

indication and health monitoring [44, 45], although further 

study on the assessing the real coupled damping effect should 

be investigated with a more complex nonlinear model. 

Finally, 𝑓1(𝑡), 𝑓2(𝑡) and 𝑓3(𝑡) are the net hysteretic restoring 

forces on each floor based on f = K(t)*V(t), which thus define 

the elements of the vector, Q, or 𝑄1,2,3(𝑡)  the nonlinear 

restoring forces for each storey. Figure 3 shows the simplified 

model, where it is clear such a modelling approach could be 

automated given identified K(t) values, mass M, and measured 

displacements and accelerations. 

 

Figure 3: Simplified model structure and degrees of freedom 

used in both x and y directions, where the experimental 

structure did not have torsional response [44], which could 

be included as required. 

Importantly, the model of Equations (1)-(5) is nonlinear with a 

time-varying stiffness and damping component varying with 

the identified stiffness changes, as seen specifically in 

Equations (3)-(4). Thus, the model structure is relatively quite 

simple, while containing potentially significant nonlinearity. 

Such a simple model is important, as initial decision-making 

will require an overall approach, and thus a detailed analysis 

may not be necessary or possible. 

Equally importantly, the model structure itself cannot be any 

more “dense” than the measurement density. In this case, the 

structure was measured at a story level in multiple directions. 

Thus, a model at story level should be considered appropriate. 

Given there was little torsion observed, the actual analysis 

utilizes two such models, one for each of the x and y directions. 

Overall, the model used thus matches the sensor density in 

terms of relevant response degrees of freedom, and, in turn, 

dictates the complexity of the model created. 

The next step is to turn identified trajectories of storey stiffness, 

K(t), in both x and y directions into simplified functions of time 

for ready model simulation. Figures 4 and 5 show the identified 

storey stiffness trajectories over all six events in both x-

direction and y-direction, respectively. Significant stiffness 

drops were identified for event 4 in both directions due to the 

much stronger input PGA of test #4 as listed in Table 1. In 

addition, the major stiffness change for event 4 occurs 

approximately between 12.5~15 seconds in Figures 4 and 5, 

corresponding to the strong shaking of the ground motion [44]. 

Stiffness trajectories were lightly smoothed using either a 

moving average or a wavelet filter [44]. While both versions are 

very similar, it is important to note the final stiffness values for 

each event are within 5% of the next event’s initial identified 

stiffness value. This event-to-event consistency and accuracy is 

evident for each storey and event in both directions. 

Linear functions are used to simply and algorithmically convert 

Figures 4 and 5 into readily simulated K(t) functions for each 

storey, as a series of linear lines. Changes less than 5% are 

considered constant. It assumes stiffness changes occur over a 

finite time, where linear lines are simple, reasonable 

approximations, readily created automatically via simple 

algorithms from the HLA results in Figures 4 and 5. Figure 6 

shows an example using 3 segments for the 1st story in x 

direction during Event 1. Table 2 shows the number of segments 

used in each story and event. 

 

 

Table 2: Linear approximation of stiffness evolution for all 6 events and both (x,y) directions in Figures 4 and 5. 

Event 

x-direction y-direction 

1st story 2nd story 3rd story 1st story 2nd story 3rd story 

#01 3 3 1 3 3 1 

#02 3 3 3 3 3 1 

#03 3 1 3 1 3 1 

#04 4 4 4 4 4 4 

#05 1 1 1 1 1 1 

#06 4 4 4 4 4 4 
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Figure 4: Identified evolution of effective elastic stiffness (ke) in the x-direction over events. The solid line km represents the 

moving average stiffness and the dashed line kw represents the wavelet stiffness, from [44]. 

 

Figure 5: Identified evolution of effective elastic stiffness (ke) in the y-direction over events. The solid line km represents the 

moving average stiffness and the dashed line kw represents the wavelet stiffness, from [44]. 
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Figure 6: Example of linear approximation for the 1st story 

in x-direction during Event#1. 

Analyses and Evaluation 

Simulations use the Newmark-Beta method and a 0.005 

seconds time step matching the experimental sampling rate. All 

six events are simulated using the model of Equations (1)-(6). 

Simulation responses are compared to measured time history 

responses, where differences would be due to the simple, 

readily automated model constructed and/or any error in the 

identified K(t) profiles. The results thus assess both the 

accuracy of the simple model creation method presented and 

provide an overall validation of the stiffness values found by 

the HLA method: 

Two metrics compare simulated and measured response for all 

events (6), stories (3), directions (x, y): 

 Peak Absolute Displacement Error: A metric associated 

with structural damage. 

 Correlation Coefficient (Rcoeff): A metric capturing 

whether the two displacement responses compared have the 

same specific shape over time. It is more rigorous than the 

typically used average absolute error as it includes accuracy 

in point to point changes in the displacement responses over 

time. A value of 1.0 indicates a perfect match in magnitude 

at each point and a value of 0.0 the worst. Given differences 

in peak displacements, a value over 0.7-0.8 would be very 

good qualitatively when plotted. 

These metrics assess the quality of the simple model, which can 

be automatically created, to match the structural response using 

the identified K(t). As noted, a good match would validate the 

approach to generating models for further decision making from 

SHM results, as well as providing further validation of the HLA 

identified stiffness values. 

Finally, a damping coefficient of 5% for the first and third 

modes was assumed using Rayleigh damping, leading to a time 

varying damping matrix based on how stiffness changed over 

time. The choice of 5% is arbitrary and commonly used [45]. 

However, a sensitivity analysis for different damping values is 

performed comparing correlation coefficients for each value to 

quantify its impact. 

RESULTS AND DISCUSSION 

Table 3 shows peak absolute errors for each event (#1-6), 

direction (x,y) and storey (1-3), where error estimating 

displacements from experimental accelerometer and other 

measurements is 0.5-1.0 mm depending on magnitude for the 

method used here [41, 46]. Figure 7 shows the 3rd storey x and 

y displacement responses, measured and simulated, for all 6 

events during periods of strong motion. Finally, Table 4 shows 

the correlation coefficients for each event.  

Table 3 has median [75th percentile] absolute errors of 0.84 

[1.99] mm. The median is within estimation error, where 21 of 

36 are less than 1.0 mm and the 75th percentile is relatively 

small. The 90th percentile error is 2.96 mm. Thus, the overall 

peak response is captured well, although not perfectly. 

 

Table 3: Peak absolute displacement error (mm) between simulated and measured response for all 3 storey’s and all 6 events in 

both x and y directions. 

Event 

x-direction y-direction 

1st story 2nd story 3rd story 1st story 2nd story 3rd story 

#01 0.17(2.3%) 0.01(0.2%) 0.39(16.3%) 0.30(4.6%) 0.21(2.3%) 0.77(20.6%) 

#02 0.84(12.3%) 0.46(8.9%) 0.67(23.0%) 0.70(8.5%) 0.15(2.1%) 0.19(4.0%) 

#03 0.50(2.8%) 0.87(11.8%) 1.09(17.1%) 2.09(19.6%) 1.30(14.4%) 0.70(14.8%) 

#04 2.96(6.6%) 3.96(12.0%) 2.32(11.6%) 6.27(14.1%) 2.34(5.9%) 4.49(15.6%) 

#05 1.02(10.4%) 0.54(7.8%) 0.39(10.1%) 0.93(5.7%) 0.80(5.8%) 0.48(5.2%) 

#06 2.58(4.7%) 2.96(6.9%) 3.82(14.8%) 1.19(3.1%) 1.99(6.0%) 0.43(1.9%) 

Table 4: Correlation coefficients, Rcoeff, for all events, storeys and directions, including mean value across all storeys and 

directions. 

Event 

x-direction y-direction x & y 

1st story 2nd story 3rd story 1st story 2nd story 3rd story Mean 

#01 0.89 0.86 0.85 0.93 0.91 0.87 0.89 

#02 0.91 0.88 0.81 0.82 0.82 0.72 0.83 

#03 0.82 0.77 0.77 0.62 0.60 0.72 0.72 

#04 0.88 0.84 0.80 0.81 0.79 0.75 0.81 

#05 0.89 0.86 0.79 0.86 0.86 0.79 0.84 

#06 0.87 0.84 0.80 0.89 0.88 0.83 0.85 
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Figure 7: Third storey displacement over the long motion period for each of the 6 events (top to bottom) to show qualitative model 

comparison in both x (left) and y (right) directions, where blue dashed lines are the experimental measurements. The linear 

estimation of the model is used in this case. Note x and y axis scales are different between events. 
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Figure 8: Third storey displacement over the strong motion for each of the 6 events (top to bottom) to show qualitative model 

comparison in both x (left) and y (right) directions, where blue dashed lines are the experimental measurements. The linear 

estimation of the model is used in this case. Note x and y axis scales are different between events. 

In all cases, the modelled motion is a good match for the 

measured motion with correlation coefficients averaging 0.72-

0.89 (0.82 overall) for all storeys, directions, and events. The 

third ground motion input is the worst with Rcoeff = 0.71, and 

eliminating it raises the average to 0.85. Qualitatively, in Figure 

7, the worst case for the third storey, and in general (results not 

shown), is the x-direction for Event #6 where there are clear 

underestimations of motion, which is reflected in the relatively 

lower Rcoeff = 0.80 in Table 4 and larger 3.82mm differences 

seen in peak values in Table 3. It is still important to notice the 

record is long and much of it matches well, although not as 

visibly well for portions. 

This relatively poorer result in the x-direction for Event #6 is 

offset by qualitatively very good results for the y-direction with 

slightly higher Rcoeff = 0.83 in Table 4. This comparison shows 

there may be differences in the simplified model chosen and the 

actual structure, as should be expected. However, these 

differences are not enough to alter what are otherwise 

qualitatively good correlation results, where it is important to 

reiterate the correlation coefficient is a more rigorous test of 

accuracy than any single point or group of points comparison. 

By further comparison, the correlation coefficients for Event #6 

are much better than the worst case Event #3, despite what 

might appear in Figure 7 to be a better overall qualitative match 
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for Event #3. In this case, in Figure 7, Event #3 tracks very well 

despite not hitting some peak values as well. However, the point 

to point correlation of changes, the shape of the response, is not 

as good. This difference thus highlights not only model 

goodness, but also the impact of metrics chosen. 

More specifically, using the correlation coefficient places value 

on the step-to-step shape of the response over time. It thus has 

lesser weight for peak values, which may also be important. 

Thus, this analysis uses Table 3 to provide a damage related 

metric of model fit and goodness. In turn, Table 4 and the 

correlation coefficient evaluates the model’s overall quality in 

capturing dynamics. Together, they provide an overall view of 

the model’s capability to represent the structure. More 

succinctly, all models and modelling approaches have 

advantages and limitations, and these different metrics used in 

this work provide a contrast across this range of ways to assess 

model function and capability. 

Figure 9 shows the impact of the choice of damping ratio from 

5-20% on the average correlation coefficient for each event. As 

with the prior results, Event #3 was the lowest overall followed 

by Event #4. Assuming a value of Rcoeff = 0.80 as a minimum, 

excluding Event #3, then values of 8% and 10% offered slight 

improvements in correlation coefficient. These results first 

suggest the choice of 5% is conservatively low, but acceptable. 

Second, the choice of damping value plays a lesser role in how 

well this simplified modelling approach captures the resulting 

dynamics. Using a “best” value of 8% raised the overall average 

correlation coefficient to Rcoeff = 0.87, which is not significantly 

higher than Rcoeff = 0.82 (Rcoeff = 0.82 without Event #3) found 

for the initial, typical 5% value chosen. 

 

Figure 9: Average correlation coefficient for each event as a 

function of damping ratio chosen. 

Combining all these results shows the simplified modelling 

approach provides a good and functional model on which 

further mitigation or other analyses could be based. The method 

is very simple to create and could thus be readily automated. 

Hence, the outcome SHM result using the HLA method is not 

only damage and localisation, but can also include reasonable 

baseline dynamic models for further analysis and assessment. 

In terms of limitations it is important to note, while the specific 

method presented is simple enough to be automated, far more 

complex models could be readily generated. However, the 

ability to automate more complex model generation would be 

reduced. Thus, more complex modelling approaches could 

reduce the method’s generalisability and likely require human 

input where automation could have the result ready in near real-

time. Equally, the model density of degrees of freedom would 

likely exceed the measured density and would thus have to rely 

on assumptions of validity for motions in between those points, 

which could offer insight, but also risk in terms of model 

validity. 

That all said, a more complex model than the simple shear 

structure of 3 degrees of freedom used here could possibly 

produce better results with minimal added effort. In this case, 

the model structure choice was made as simple as possible to 

demonstrate the potential of the approach. A more detailed 

analysis would be required to assess how simple or complex a 

model might be required for a given case, where this analysis 

shows the potential for a real structure. 

However, and equally importantly, the relatively quite simple 

three degree of freedom models used here for each direction, 

captured the data very well, and thus a main outcome of the 

analysis is also how well such a relatively quite simple can 

perform when given the proper nonlinear inputs for stiffness 

changes. In this case, the model is almost absurdly simple, yet 

matches data very well. This outcome indicates the validity of 

the SHM method, as well as the need for little additional 

complexity in subsequent, initial model generation. In further 

analysis, one could of course add additional nonlinearities for 

better future prediction. 

Equally, the linear damage approach is simple and provided 

good results. These results indicate the losses of lateral story 

stiffness for this 3-story E-Defense real building can be well 

identified and further used as damage indices in future health 

monitoring for a quick decision, considering the overall 

approach can be done within a few seconds with this simplified 

foundation model. However, a more accurate or complex 

realisation of the time-varying stiffness in Figure 4 might have 

resulted in a more accurate outcome, where errors in peak 

displacement in Table 3 might have been lower with a more 

accurate representation of the change in stiffness due to 

damage.  

Again, there is a potential trade off and compromise amongst 

increasing complexity, increasing accuracy, and simplicity / 

automation [47]. A more complex model would yield a more 

accurate results, while it would require more a-prior knowledge 

of the structure and engineering analysis, take much longer time 

to process, and may also suffer the identifiably and model 

mismatch issues [15, 48]. In this case, the results were 

considered “good enough”. However, the real assessment of 

accuracy is a function of the eventual outcome use intended, 

which was not the scope of this work. 

The overall results show the potential and limitation of using a 

simplified model with HLA SHM results for automated 

modelling and dynamic analysis when applied to a real 

apartment building structure. The major limitation of the simple 

model is the lack of its ability to represent the exact nonlinear 

behaviour for detailed structural elements and/or complex 

modal response, but provides the estimates of the fundamental 

dynamics of the lateral vibration. Structures with a more 

complex nonlinear behaviours would require a more degrees of 

freedom and complex hysteretic model to represent the 

significant dynamics, which in turn requires a more complex 

and dense instruments. Therefore, a future work would be 

needed to investigate how complex a model should be choose 

with limited number of sensors.  

Finally, regarding the relative importance of this work, here are 

many model-based SHM methods (e.g. [2-4, 6-13, 16-24]). In 

these cases, the model is at the heart of the SHM method and 

simulating the identified model will provide a response as good 

as the identification fit. However, and very importantly, if the 

model chosen is not a good match, the identification will be 

inaccurate [14, 15]. In this case, one has a good model in terms 

of replication, but the damage identification is inaccurate or 

misleading. This latter issue is critical as it means any use of the 

model to evaluate damage mitigation for safety or re-occupancy 

will be in error, potentially significantly so. 

Because the HLA method is model-free, it requires some form 

of model creation approach to provide further value beyond 

damage localization and quantification. There are several 
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model-free approaches (e.g. [25-32, 34, 35]). Such an approach 

would potentially work with some of these SHM methods, as 

well. However, a similar approach could be used to assess the 

potential with other SHM methods. Hence, one main novelty 

and outcome of this work is the ability of the approach to 

generate an accurate valid model, which in turn can enable 

better decision-making post-event and serve as a baseline on 

which to build further models for more in-depth analysis and 

decisions. 

There is thus a contradiction between the identification 

approach used for SHM and the possible end-uses. Equally, the 

limitations of the approach, such as model-based SHM error 

due to a mismatch in structural model and monitored structure 

behaviour, trade off with the same end uses. This work thus 

utilises the HLA method as it is model-free, avoiding these 

model-method mismatch issues, but also because of its proven 

accuracy and consistency across multiple events experimentally 

and as quantified analytically [40-44, 46, 49-51], where, to date, 

no other method has demonstrated both its accuracy and its 

consistency over multiple events. 

These issues are little to not-at-all discussed in the SHM 

community. There is thus a strong and growing need to consider 

these alternatives and issues in developing effective SHM and 

extending its use, efficacy, and thus benefit. 

CONCLUSIONS 

This paper presents a simplified model creation method for use 

with model-free structural health monitoring methods. The goal 

is to create accurate baseline models using data from SHM 

damage identification and localisation methods to create 

models suitable for further investigation and analysis on safety, 

damage mitigation, and thus re-occupancy. Such models would 

take SHM from being a tool for damage identification and 

extend them into further decision-making, creating far greater 

utility for engineers and owners, which could further spur 

impetus for investment in monitoring. 

The specific method presented is validated against experimental 

data from the E-Defense facility in Japan for a 3-storey 

apartment structure subjected to six events and suffering 

significant damage in some but not all events. Comparison of 

model results to the experimental data shows qualitatively good 

matches for peak displacements and correlation coefficients, 

where the first metric assesses damage and design related 

outcomes, and the second assesses how well the overall 

structure dynamics are captured. In general, results were very 

good and demonstrate a good baseline model can be generated 

for immediate use and longer-term evaluation of structural 

outcomes and mitigation.  

A further main outcome is that a relatively simple model 

structure can yield a reasonable accuracy of the replicated 

response with nonlinearities in a given strong earthquake input 

for a real structure, validating the potential of this simple model 

generation to provide an near-real time dynamic analysis for 

decision making, as well as extending to a more complex model 

creation. However, the method still remains to be further 

validated for combined soil-structure system and/or other 

scenarios in a real application, in which more complex 

dynamics and higher mode response might be coupled in the 

vibration. 

In terms of limitation, the effect of soil-structure interaction 

(SSI) is not considered in the dynamic modelling and analysis 

for the proposed algorithm. Such SSI might have significant 

effect on structure damping, period and thus response spectrum, 

particularly for very soft soil condition. These effects were 

quantified in a large series of Monte Carlo analyses by 

Moghaddasi et al quantifying the risk of exceedance in 

predicted response (or reduction) due to SSI effects with 

moderate and soft soils for linear and nonlinear structures [52-

56]. This series of detailed analyses show the response 

compared to fixed base assumptions is similar or smaller at least 

75-85% of the time, but for ~ 5-10% of cases, the risk of even 

larger displacements and response occurs due to SSI effects and 

soft soils. However, such simulation analysis does not 

necessary represent the true reality of SSI effect. Thus, the 

method still remains to be fully validated using real building 

data under different soil conditions. Equally, given the 

requirement of a ground motion measurement at the structural 

foundation, the “true input” to the structure, including 

modification due to SSI, is incorporated in both the HLA 

identification, as well as in the input for any future events. 

Overall, the robustness of the HLA method and this automated 

modelling approach for accurate prediction under soft soil 

conditions still remains to be completely validated before a 

pragmatic application in these types of sites. 

The method is simple and generalizable. It can be readily 

extended to more complex models or other similar approaches 

using different modelling approaches depending on the sensor 

density and resolution of SHM results.  Future work should 

also consider extending these methods to creating far more 

predictive, nonlinear models if possible, especially given the 

Christchurch series of earthquakes where major shocks were 

followed by almost equally large second shocks. 
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APPENDIX A. HLA EXAMPLE 

A single degree of freedom system was excited using f(t), as 

shown in Figure A-1. The parameters for the system are set in 

Table A-1. Figure A-2 shows the hysteresis loop of the 

simulated system under 1.5 cycles excitation f(t). Here we 

added 10% RMS noise to the simulated data. 

Then we start to identify the pre-yielding stiffness (ke), the post-

yielding stiffness (kp) and cumulative plastic deformation 

(∆dp) using the proposed method step by step, as shown in 

Figure A-3.  

 

 

Table A-1: Set of parameters. 

Mass Post-yielding stiffness Pre-yielding stiffness Yield displacement Damping ratio 

1 1 0.1 1 5% 

 

 

Figure A-1: Simulated system. 

 

 

Figure A-2: Hysteresis loop of the simulated system. 
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Figure A-3: Flowchart of HLA Implementation.

 


