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ABSTRACT

An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of
failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial
force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a
section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with
shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear
capacity of RC columns. Shear-moment (V-M) interaction capacity diagram of an RC column, viewed
alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical
estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to
different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth
ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other
analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when
estimating shear capacity of RC columns. In addition, the method provides insights into the shear resistance
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mechanism in RC columns under the combined action of P-V-M, and it is simple to use.

INTRODUCTION

RC columns and bridge piers are subjected to combined axial,
shear, and bending (P-V-M) effects during earthquakes. Poor
performance (primarily brittle shear failure of piers) of RC
bridges in past earthquakes, led to analytical and experimental
studies over the past several decades worldwide towards
understanding behaviour of RC members under combined load
effects. Analytically estimating lateral shear strength of RC
members is challenging owing to nonlinear behaviour under
combined P-V-M actions. Flexural strength is dependent
primarily on the level of imposed P and (V/M). In addition,
nonlinearity arises due to cracking of concrete followed by
inelasticity in steel reinforcement bars in tension, and in
concrete in compression. Neglecting interaction of these
combined effects of P-V-M overestimates lateral load carrying
capacity of RC members [1]. In general, shear capacity
decreases with increase in flexural demand, particularly in
regions of high inelasticity (i.e., plastic hinge regions) [2].
Thus, a robust analytical method is required to capture realistic
behaviour of RC members subjected to earthquake shaking
effects.

Studies to estimate response of RC members subjected to
combined load effects initiated during the late 19" century and
early 20™ century by Ritter (1899) and further improved by
Morsch (1902) were sectional or semi-empirical methods, but
gave results consistent with experimental findings. These
methods use Truss Models and idealize the RC member
subjected to shear and bending [3] with diagonal compression
struts of concrete inclined at 45° to the longitudinal axis, and
with the steel bars; they constitute a truss and resist the applied
forces on the beam. Although these truss models overestimate
the shear capacity, they are employed with some modifications
owing to their simplicity and reasonable accuracy to estimate
shear capacity [4-12].

The truss models estimate zero shear capacity for members
without shear reinforcement, because the tensile strength of
concrete is neglected. Hence, an additional term was included
in design codes to account for tensile strength of concrete using
an empirical expression for nominal shear strength of concrete
at the diagonal cracking load, based on the then available results
from experimental studies on concrete members [13, 14].
Additional research on truss models led to generalization of
angle of inclination of concrete struts, and to incorporate effects
of transverse and longitudinal steels [15, 16]. Three equilibrium
equations were derived considering varying strut angle, which
explained the reason for yielding of both transverse and
longitudinal bars at failure. These models, known as
Equilibrium Plasticity Truss Models, estimated the strut angles
using minimum energy principles. To extend their applicability
to lightly loaded members and to regions of members, which do
not require shear reinforcement, these models were refined with
an additional term for concrete contribution [17, 18].

To further improve the estimates from Truss Models, another
model was suggested with compatibility conditions included to
estimate the strut angles; this Compression Field Theory [19]
assumed strut angles to coincide with the direction of principal
compressive strain. After cracking of concrete, shear is
assumed to be resisted by an array of diagonal compressions
struts. This method evaluated biaxial stress and strain
conditions in an RC member subjected to combined load
effects. It neglected the tensile strength of concrete, which led
to overestimation of deformation. Further verification of the
theory with number of test results from RC members subjected
to combined P-V effects led to further modification of the
theory, and was called Modified Compression Field Theory
[20]. Based on experimental data, constitutive relations were
proposed of concrete in tension and of reinforced concrete in
tension and compression. Effects were included in the model of
local stress conditions at crack locations, strain softening and
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tension stiffening. Around the same time, a unified Softened
Truss Model was proposed considering equilibrium,
compatibility and softened stress strain relationships, which
helped to estimate both strength and deformation capacities of
RC members subjected to shear and torsion along with post-
cracking loading history [21]. The model provided results with
reliable accuracy for a range of members, including deep
beams, low rise structural walls, frames with structural walls,
and members subjected to torsion. Subsequently, many Truss
Arch Models were proposed to estimate shear capacity of RC
members, particularly shear critical columns [2, 22-24]. In these
models, the shear force acting on an RC member was
considered to be transferred partly by truss action and partly by
arch action, primarily depending on shear span to depth ratio.
The key parameters considered in most models include axial
load ratio, longitudinal and transverse reinforcement ratios and
their arrangement, and shear span to depth ratio; effects of
reversed cyclic loading was accounted for.

Further, several numerical and analytical methods were
proposed, where P-V-M interaction was considered using
macro models [25-28] and micro (fibre-based) beam-column
elements [29, 30] with additional features to capture shear
deformations and dynamic response. While some methods used
Timoshenko Beam Theory to quantify the shear resistance
mechanism (considering equilibrium between concrete and
transverse steel through truss action, and then superimposing
the fibre beam element), the others used semi-empirical
approach to consider the P-V-M interaction. In the fibre beam
element, a nonlinear shear force-shear deformation law was
used to analyse RC members. These methods have proved to be
efficient in the analysis of shear critical members. Some of
these methods involve a large number of variables and require
iterations to arrive at the solution, making them difficult for use
in design. Some others introduce additional concepts, like
incorporating static theorem of limit analysis [24]. Further,
some of these methods do not provide understanding of the
progressive crack behaviour of RC members under combined
loading, though they provide expressions for estimating shear
capacity at failure.

In this paper, a physically intuitive analytical method is
proposed considering basic mechanics of the RC cross-section
and member, which overcomes the said challenges in the
existing methods. It estimates the lateral shear strength of RC
cantilever columns with constant axial load and bending in
single curvature, by integrating the well-established shear
capacity estimation method with the conventional sectional
analysis approach (for capturing P-M interaction). Also, the
method captures: (a) the type of damage (whether by shear or
flexure) and location of damage, and (b) effects of aspect ratio,
axial load level, and amount and distribution of both
longitudinal and transverse reinforcements.

Generally, monotonic backbone curves are seen to be the upper-
bound envelopes of the cyclic hysteretic loops generated during
cyclic loading, and in most cases, the peak load is obtained in
the first significant cycle of cyclic hysteretic loops, which is as
good as the monotonic test behaviour. Also, lateral deformation
at peak load is not the focus of this study. Further, the cross-
inclined cracking and the associated strength degradation and
stiffness deterioration during hysteretic behaviour do not affect
the decision making on the mode of failure, because the failure
mechanism is governed by the maximum shear force demand
induced in the RC column. Even though, the damage is initiated
during the early loading history, the mode of failure of the RC
column is determined by this maximum shear force induced in
the member during the loading cycle. Furthermore, the possible
transitioning from flexure failure to shear failure and vice-versa
is not a concern, because the mode of failure is controlled by
the relative values of global flexure and shear strengths.

Therefore, monotonic loading based estimation may suffice of
over-strength flexure-driven shear force demand (and shear
capacity) in RC columns. Hence, this method does not use any
other information of cyclic loading (except the peak load in the
first significant cycle) when estimating the shear capacity of RC
columns.

Accordingly, the objectives of the current study are to:

1. Develop a simple analytical method to get insight into
internal resistance mechanism behavior of RC columns of
rectangular cross-sections considering axial-shear-flexure
interaction; and

2. Estimate the failure load, failure mode and failure location
of single cantilever RC columns subjected to lateral action.

PROPOSED METHOD

The proposed method is a simple mechanistic analytical method
that estimates (with reasonable accuracy) the failure (load,
mode and location) of single cantilever RC columns. It involves
use of expressions that have been used traditionally to analyse
RC members under flexure, and hence easy to understand. Also,
it focuses on the initiation of damage, whether shear or flexure;
this is valuable in precluding shear failure in RC columns at the
preliminary design stage. Further, it includes the effect of aspect
ratio, axial load level, and amount and distribution of both
longitudinal and transverse reinforcements. Compared to the
existing methods, the proposed method explains in a simple
way the step-wise progression of failure and the contributions
of concrete and reinforcing steel to the mechanism of shear
resistance.

Thus, the axial and flexural strength capacities of RC columns
are determined using conventional section strength estimation
approach. The lateral shear strength of RC members is
determined considering contributions of: (1) concrete V¢, using
section strength approach, and (2) transverse reinforcement
(stirrups) Vst (through direct tensile action) and longitudinal bar
Vs (through dowel action), using member strength approach.
The mechanism of resistance is established of an RC member
under combined P-V-M, using equilibrium of forces,
compatibility of strains and uniaxial material constitutive
relations within the cross-section, and equilibrium of forces and
moments within the member.

Section Behaviour

The cross-section of an RC column is discretized into a number
of thin fibres of concrete (Figure 1), with width of each fibre
parallel to the axis of bending; the flexural behaviour is
evaluated of the cross-section through traditional moment-
curvature analysis under the known axial load. The longitudinal
bars are represented by equivalent fibres at the centroid of each
bar. The shear capacity of each fibre of concrete is estimated
corresponding to the normal stress acting on it, using the
Bresler’s normal stress — shear stress failure criterion [31].
Confinement of concrete and strain-hardening of longitudinal
bars are accounted when estimating the P-M capacities of the
section. The assumptions made are [32]:

1. Plane sections normal to the longitudinal axis of the
member remain plane even after deformation;

2. Strength of concrete in tension is ignored;

3. Concrete and reinforcing bars are perfectly bonded,;

Normal stress f — normal strain ¢ relations of concrete and
steel are known and can be expressed as functions fe=Fc(ec)
and fs=Fs(es), respectively; and

5. Limiting strain in unconfined concrete is 0.004.
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Figure 1: Discretization of cross-section and approximated normal strain and stress in fibres.

Compatibility Conditions

From the strain compatibility arising out of the linear
distribution of normal strain assumed across the cross-section
(Figure 1), normal strains in each concrete and steel fibre (in
tension or compression) [32] are:

Eci =€o T VYiAp (1a)
Esci =€0 T YiAe (1b)
Esti =&o t i@ (1)
where,
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in which, &, is the average compressive strain in i fibre of
concrete, & the average normal strain in " fibre of
longitudinal steel in tension, &, the average normal strain in it"
fibre of longitudinal steel in compression, & the average normal
strain in the middle fibre, aop the average strain in the top
concrete fibre, et the average strain in the bottom concrete
fibre, N the total number of fibres, d the effective depth of
section, Ao the change in curvature and yi the distance to the
centroid of it fibre from the geometric centroidal axis of the
cross-section.

Constitutive Relationships

The stress-strain curves of core and cover concretes differ
depending on the level of confinement provided to the core by
transverse reinforcement. This is determined using a standard
confinement model [33] (Figure 2), where normal stress in a
confined concrete fibre is given by:
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foj =—— @
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where,
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in which f'cc the confined compressive strength of concrete; fco
is the unconfined compressive strength of concrete taken as
0.85 times the cylinder strength; ' the effective confining stress
calculated considering rebar arrangements; f ¢ the normal stress
in the i fibre of concrete; &i, &0 and &c the strains
corresponding to f'ci, feo and f'cc respectively; and Ec and Ecsec
the initial tangent and secant moduli of concrete, respectively.
The limiting strain of confined concrete is taken as [34]:

0.6p. fre
€c,max = 0.004+M o

1:CC

where, fyt and &u are the yield strength and fracture strain of
transverse steel; and ps the percentage of transverse
reinforcement. The longitudinal and transverse steels are
assumed to undergo strain hardening after yielding in the
normal stress - strain curve. Further, normal stress - shear stress
interaction of concrete is considered using an interaction model,
originally derived based on experimental test data of a number
of RC members tested under combinations of compressive and
shearing stresses [31] (Figure. 2), given by:

2
011 |062+7.86 ~<i | _g.a6l Jci| o
ci =U.Lig, /L. - f . ; (10)

C c

where, =, is the average shear stress; fci the average normal
stress of the it" fibre of concrete; and fc the compressive strength
of concrete. In this model, a parabolic dependence is assumed
of shear stress on normal stress, through a three-parameter
model in terms of octahedral stresses. These three parameters
are established by curve fitting of available experimental test
data of number of RC members tested to failure under different
combinations of compressive and shearing stresses. Other
refined models available in literature [34, 35], which use four
parameters (as in William Warnke Model) and five parameters
(as in Ottosen Criterion, Reimann Criterion and Hsieh-Ting-
Chen Criterion) as variables, provide a closer estimate of
experimental test data, reflecting all characteristics, but are
complex and requires more computational effort.
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Figure 2: Schematic showing constitutive relationships considered in the proposed analytical method.

Stress-strain curve of reinforcing steel as per Indian standard
specifications, IS 456 [32] is adopted in the study which is
considered to be satisfactory. As per IS 456, stress remains
proportional to strain up to 80% of the yield stress, fy beyond
which it is nonlinear and reaches the yield stress at strain of
(0.002+ fy /Es) , where, Es is the elastic modulus of steel. Beyond
this point stress remains constant with further increase in strain.
But, the curve is modified by incorporating effect of strain
hardening, for a reasonable estimation of strength and ductility
capacity. A bi-linear stress strain curve meeting smoothly at
transition, with 15% strain hardening is considered. Strain
hardening is assumed to start soon after its yielding, up to a
maximum elongation of 20%.

Equilibrium Equations

A strain-based moment-curvature (M-¢) relation is derived of
an RC section for applied P; the strain at the extreme top
concrete fibre ewp is incremented from the strain corresponding
to zero curvature at that level of P, while the strain at extreme
bottom fibre evot is gradually reduced. For each distribution of
normal strain across the cross-section, normal strain in concrete
and steel fibres are computed using Eg. (1), and the
corresponding normal stresses are computed using Eqns. (4)
and (8). Then, axial force equilibrium of the section is ensured
using:

N N
2feiAi+ ZfsiAi—Pext =0 (11)
n=1 n=1

and bending moment capacity of the section is estimated (about
the geometric centroidal axis of the section) for the imposed
normal strain distribution as:

N N
M=% feifciVei+ 2 fsiAsiVsii (12)
n=1 n=1

Then, for every combination of P and M, the shear strength =,
of the it fibre is estimated using fci and Eq.(10). Then, the shear
capacity contributed by concrete is computed as:

N
Ve =2 7cifc (13)
n=1

Typical normalised shear strength — axial load and shear
strength — bending moment interaction curves are developed for
prismatic square RC cross-sections at various axial load levels
(Figure 3). The cross section geometry and reinforcement
details of the prismatic RC section considered in the study are
shown in Figure 3a. Grade of concrete used is assumed to have
a 28-day characteristic cube compressive strength of 30 MPa,
and both transverse and longitudinal reinforcement have yield
strength of 415 MPa. The key observations are: (a) for any
given level of axial load ratio, shear strength Vc (at M = 0)
increases with increase in compressive axial load up to half the
axial load capacity, and decreases rapidly with further increase
in axial load ratio (Figure 3b), and (b) for any given level of
axial load ratio, shear strength V. contributed by concrete
decreases with increase in bending moment demand on the
section (Figure 3c); the reduction is fast as the section
approaches its bending moment capacity. This observation
reinforces the concept that shear capacity RC sections is
significantly reduced due to flexural demand, as in potential
plastic hinge regions, and thus, seismic design of such regions
require consideration of P-V¢-M interaction.

Member Behaviour

Contributions to shear strength capacity of RC members are
estimated as offered by concrete V. by transverse
reinforcement (stirrups) Vst intercepting cracks through direct
tensile action, and by longitudinal bars Vs through dowel
action. The total contribution of stirrups towards shear strength
capacity is governed by the crack angle. The dowel action of
longitudinal bar is considered when both concrete and
transverse reinforcement capacities are exhausted, i.e., only
when the shear crack passes through the entire member depth.
Crack angle and shear strength contributions of transverse and
longitudinal bars are computed using simple expressions.
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Figure 3: Shear strength of concrete for a typical rectangular RC section at different levels of axial load:
(a) cross section details normalised, (b) normalised variation of shear strength capacity of
concrete at zero bending moment and (c) V¢-M interaction curves.
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Crack Angle

Ideal values of crack angle o in RC cantilever members in single
curvature of depth H subjected to constant axial compressive
force P, lateral shear force V, and bending moment M acting
individually are 90°, 45° and 0°, respectively, where a is
measured with respect to the direction normal to the
longitudinal axis of the member. Hence, under combined action
of P, Vand M, the crack angle « is estimated by:

a=" L P Ly M (142)
4 2 V) 2 VH

or after eliminating V (=M/L) from Eq. (14a),

o=Z Lt P L L (14b)
4 2 M) 2 H

Thus, when V is high (which is expected during strong
earthquake shaking), o estimated is close to 45° in squat
members with small L/H ratio, and lesser than 45° in slender
members with large L/H ratio. Similarly, when V is small
(expected during low level earthquake shaking), a estimated is
close to 90° in squat members and close to 0° in slender
members. Thus, the possible range of crack angle is 0°<a<90°.
Depending on the crack angle «, a finite number of transverse
reinforcement bars contribute to shear capacity of the member.
The total shear strength contribution of transverse
reinforcement is given by:

N
Vst = .Zlei Asti » (15)
i=

where, fyi is the yield strength of reinforcing bar i, Asti the cross-
sectional area of bar i and N the number of stirrups intercepting
the crack along the length of the member.

Dowel Action

Contribution of longitudinal bars is considered through dowel
action. Transfer of dowel force through shear in longitudinal
bars is unlikely because of the need for large deterioration of
concrete in the vicinity of the bar. Similarly, effect of kinking
of the bars is insignificant as the crack width of concrete
remains small relative to the bar diameter at the initiation of
damage of the member. Thus, the dowel force is estimated
considering plastic hinges to develop in the bars bending
between two adjacent stirrups. To obtain upper bound estimate
of dowel action, the bars are assumed to have full rotational
fixity at the stirrups. Thus, the shear resistance offered by dowel
action of ni number of longitudinal bars Vs [11] is estimated as:

3
v, = ma” e

sl 3 (16)

y i
Vv
where, sy is the spacing of stirrups, d the diameter, Fy the yield
strength, and ni the total number of longitudinal bars
contributing to dowel action.

Limiting Lateral Shear Strength of RC Members

Limiting lateral shear strength of an RC member is estimated
using V-M interaction strength envelop of the cross-section as
offered by un-cracked concrete for a known P, and
contributions of transverse and longitudinal bars (Figure 4);
nominal shear resistance offered by aggregate interlock is
implicitly accounted through z but not explicitly considered
[10,13,31]. Figure 4 depicts how a prismatic cantilever RC
member fails in shear, with uniform distribution of both
transverse and longitudinal bars along the length of the member.
Salient features of the interaction diagram and the shear transfer
mechanism in the member are discussed below.
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Figure 4: (a) Crack propagation across RC column (b) shear resistance mechanism in an RC member,
for a considered value of compressive axial load.

(a) Salient Features - The salient features of the member V-M
interaction diagram (Figure 4b) are:

Curve V¢ represents variation of shear capacity of
concrete with increase in bending
moment, at a given compressive axial
load, and describes the concrete shear
capacity envelope;

represents contribution of stirrups to
lateral load carrying capacity of the
member through direct tensile action;

represents contribution of longitudinal
bars to the lateral load carrying capacity
of the member through dowel action;

represents flexural capacity limit of the
member, at stirrup levels 1, 2, and 3 (the
limit is same when member is prismatic
and has uniform reinforcement);

represent lateral shear force demand at
stirrups 1, 2, and 3, respectively,
corresponding to bending moments
induced at stirrup levels; and

Line Vst

Line Vs

Line Mcap

Lines V41 to Vaz

Curves (Vc+Vs)103  represent shear resistance capacity of the
member, namely the net contribution of
concrete and stirrups towards the lateral
load carrying capacity of the member.

(b) Shear Resistance Mechanism - The shear strength capacity
of concrete reduces with increase in flexural demand as
depicted by Curve Vc (Figure 4b). Initially, concrete alone
contributes to shear resistance. As lateral load increases on the
member, both V and M increase linearly, as represented by the
demand Line (Va)1. When the demand line crosses the original
concrete capacity curve (at point 1 in Figure 4b), crack (defined
by angle o as in Eq.(14)) grows from the left side of the member
(Figure 4a) until intercepted by the stirrup at level 1 (at a
distance Li from the loading point at top). Then, the stirrup
contributes to shear resistance, as shown by the first jump in the
Line Vst. Thus, now concrete and stirrup at level 1 together
contribute to capacity, as shown by Curve (Vc+Vs)1. With
further increase in V, contribution of concrete V. continues to
decrease with increase in M. This is represented by drop in
capacity Curve (Vc+Vs)1, until the demand Line (Va)z, at stirrup
level 2 crosses the capacity Curve (Vc+Vs)1. At this stage, the
shear crack grows further until intercepted by the stirrup at level
2. Again, the stirrup at level 2 (at a distance L2 from the loading
point at top) contributes to shear resistance, as shown by the



second jump in the Line Vs. Thus, now, the concrete and the
stirrups at levels 1 and 2 together contribute to capacity, as
shown by Curve (Vc+Vst)2. This process continues as the crack
propagates across the cross-section; in the process, Ns number
of stirrups contributes to meet the demand and is represented by
the step-by-step increment in shear capacity contribution of
stirrups. Once the crack passes through the cross-section (point
3 in Figure 4b), the total contribution of concrete and stirrups
gets exhausted and the member fails in shear, unless the dowel
action contribution as represented by the demand Line (Vs)
(which primarily contributes to the residual lateral load carrying
capacity of the member), is able to resist the corresponding
demand.

Failure is defined as the strength at which demand exceeds
capacity. Bending moment demand varies along the height of
the member. Hence, the shear capacity at each section along the
height also varies. For a cantilever column, as the shear force is
nearly constant throughout its height, critical section is always
at the base, because shear capacity is least as the bending
demand is the largest at the base. But, for a flared member or a
prismatic member with varying transverse reinforcement along
its height, failure may be initiated by shear at a section other
than the base, as the concrete shear capacity of cross-section
varies along its height (Figure 5). Thus, shear failure is likely to
occur in flared down member at the junction between flared and
prismatic sections (Figure 5a), while flexural failure is likely in
flared up member at the base (Figure 5b).

(c) Load and Mode of Failure — The shear capacity Curve
(Ve+Vst)n, (Ns=3 in Figure 4) together with demand Line (Va)n
and moment capacity Line Mcap, facilitates estimation of failure
mode of a member with given cross-section. A member will fail
in shear, if the demand Line (Va)n crosses the supply Curve
(VetVsn at a lateral load level lower than the lateral load
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corresponding to intersection of the demand Line (Va)n and the
flexural capacity Line Mcp (Figure 6a). The lateral load
corresponding to intersection of (Va)n and Curve (Vct+Vson
represents the load at shear failure (as in Figure 6a with failure
load of 430 kN). On the other hand, a member will fail in
flexure, if the demand Line (Va)n crosses the moment capacity
Line Mcap at a lateral load lower than that corresponding to the
intersection of demand Line (Va)n and the supply: (a) Curve
(Ve+Vsn (Figure 6b), or (b) Curve V¢ alone (Figure 6c). The
lateral load corresponding to intersection of (Va)a and Line Mcap
represents the lower bound lateral shear strength as the failure
initiates in flexural mode (as in Figure 6¢ with failure load of
159 kN). As a special case, if the load corresponding to
intersections of (Va)n and Mcap, and that corresponding to
intersection of (Va)n and (Vc+Vst)n are almost equal, the member
is likely to fail in a mixed flexural-shear mode (as in Figure 6b
with failure load of 320 kN). Thus, the lateral load capacities of
the RC columns shown in Figures 6a, 6b and 6c are 430 kN,
320 kN and 159 kN, respectively.

VERIFICATION OF THE PROPOSED METHOD

The accuracy of the proposed method is examined by
comparing lateral load carrying capacity and mode of failure,
with those from experimental results of 107 RC specimens
reported in literature [36-54]. Also, the estimated lateral load
capacities of the 107 specimens are compared with those
obtained using four other methods reported in literature [2, 22-
24]. The distinguishing parameters in the 107 specimens are:
(@) shear span-to-depth ratio of 1.0-6.6, (b) transverse
reinforcement  ratio  0.0014-0.0240, (c) longitudinal
reinforcement ratio of 0.010-0.033, (d) axial load ratio of 0.05-
0.68, (e) concrete (cylinder) strength of 20.2-49.3 MPa, (f) yield
strength of reinforcement of 255-580 MPa, and (g) type of
loading being double bending (DC) [40, 49], double ended (2C)

Bendina Moment (M)

Shear Force (V)

Lateral
Load
Carrying
Capacity

@)

o6

Bending Moment (M)

(b)

Figure 5: Typical location and modes of failure of non-prismatic RC piers (a) flared down; and (b) flared up.
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Figure 6: Typical modes of failure based on demand-capacity interaction;
(a) shear failure, (b) flexural shear failure, and (c) flexural failure.

[36, 49], and cantilever columns (C) [45, 49]. Table 1 compares
the experimental results with the values obtained using various
theoretical methods. The geometrical and mechanical
properties of the 107 specimens along with the estimated shear
capacity and experimental results are given in Table 2, along
with the estimated and observed modes of failure of the
specimens.

The proposed method captures the mode of failure, in 105 of
107 cases, observed in experimental investigations. The
proposed method underestimates (by about 10%) the shear
strength of RC columns, particularly of specimens whose
behaviour is governed by shear. Thus, the comparison of failure
load estimated using proposed method Vprop and the

experimental results Vexp (Figure 7a) suggests that the proposed
method is consistent for both flexure and shear critical
specimens; the variation of ratio of Vprop/Vexp as a function of
shear span-to-depth ratio is shown in Figure 7c. Also, the
estimated crack angles of the specimens correlate well with the
experimentally measured crack angles (Figure 7b).

The mean ratio (of 0.91) of theoretical to experimental shear
strengths of all 107 specimens considered in the study obtained
using the method proposed compares well with those obtained
using other theoretical methods (Table 1), although the Method
1 [2] provides the highest mean ratio of 0.95. This higher mean
ratio in Method 1 is attributed to over-estimation of shear
strength capacity (with mean ratio of 1.03 and standard
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Figure 7: (a) Comparison of numerical estimates of lateral load (shear) capacity of 107 specimens to
experimental values, (b) ratio of proposed to experimental shear capacity across various shear span to depth ratio, and
(c) comparison of ratio of theoretical to experimental crack angle.

deviation of 0.128) of 43 shear critical specimens; this arises
because the transverse steel contribution to shear strength is
estimated using 30° crack angle.

This was modified in Method 2 [22], where both concrete and
transverse reinforcement contributions to shear are assumed to
depend on member displacement ductility. The Method 2
estimates the shear strength better with a smaller standard
deviation of 0.067 for shear-critical specimens, but the
percentage difference in the estimation of strength of all
specimens is slightly more (about 10%) than by the other
methods. Method 3 [23] also estimates shear strength of shear
critical specimens with reasonable accuracy with mean ratio of
0.92, but the standard deviation is higher (0.081). This is likely
to be due to the simplification made in estimating concrete and
stirrup contributions to shear strength. Here, although shear
strength estimation is based on the Modified Compression Field
Theory, simplified parameters were used to estimate the crack
angle and concrete contribution. Finally, the estimation of shear
capacity by Method 4 [24] is consistent for both shear and
flexure critical specimens, with the least error (of 8%). But, the
method of computation does not provide additional insights into
shear resistance mechanism in RC members.

In contrast, the Proposed Method successfully employs the
conventional cross-section analysis approach and two
established constitutive relations to estimate the shear strength
of RC members, although the estimation is slightly conservative
with a mean ratio of 0.90 and standard deviation of 0.084. The
underestimation of shear capacity is possibly due to the simple
assumptions made including the linear strain distribution across
the cross-section and stress-strain curve of transverse steel; it is
acceptable if shear strength is not overestimated, especially in
safety assessment of existing RC members for possible retrofit.
Finally, the error of about 10% in estimates obtained using the
proposed method is comparable to those obtained using the
other methods.

The advantage of the proposed method is that it provides
additional insights into the mechanism of shear resistance in RC
members (Figure 4). But, the sizes of the test specimens (whose
results are taken from literature) are small. When this method is
applied to large RC sections, like those of the bridge piers, the
effect of cross-sectional size needs to be incorporated in the
estimation of shear capacity; for this purpose, the size effect
factors proposed in literature [55-56] may be used.

Table 1: Statistical variation of theoretical results obtained
from the proposed and other methods.

Vineo Vexp
Parameter Method 1 Method 2 Method 3 Method 4 Proposed
[2 [22] [23] [24]

ALL (107) SPECIMENS
Mean 0.950 0.900 0.900 0.920 0.910
Standard Deviation 0.116 0.070 0.077 0.082 0.087
Maximum 1.390 1.160 1.160 1.160 1.220
Minimum 0.760 0.760 0.760 0.760 0.730
SHEAR CRITICAL (43) SPECIMENS
Mean 1.030 0.920 0.920 0.910 0.890
Standard Deviation 0.128 0.067 0.081 0.074 0.078
Maximum 1.39 1.080 1.090 1.120 1.080
Minimum 0.760 0.760 0.760 0.760 0.780
FLEXURE CRITICAL (64) SPECIMENS
Mean 0.900 0.900 0.890 0.920 0.930
Standard Deviation 0.073 0.072 0.073 0.087 0.089
Maximum 1.160 1.160 1.160 1.160 1.220
Minimum 0.760 0.760 0.760 0.770 0.730
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New Zealand Guidelines

The NZ Guidelines is generally based on Method 2 or the model
proposed by Sezen and Moehle (2004) [57], which provides
estimate of lateral strength alone, as:

V, =V, +V (17

(18)

(19)

where, f’c is the concrete compressive strength, a the distance
from the point of maximum moment to point of zero moment,
d the distance from extreme compression fibre to the centroid
of longitudinal tension reinforcement, P the axial load, Aq the
gross cross sectional area of column, Ay the area of transverse

steel (= pvbs), pv the transverse reinforcement ratio, b the width
of the column, and s the spacing of transverse reinforcement.

The model uses a factork , which is assessed broadly from
experimental data and depends on member displacement
ductility. For shear-critical members (with displacement
ductility of 1), the scatter of experimental data from the
considered value of K is almost + 20% [57]. In contrast, the
proposed method does not use such an adjustment factor, but
still provides a strength estimate in the same ball park of
Method 2. Method 2 and the proposed method have similar
normalized means (of 0.90 and 0.91 respectively), when all
specimen are considered (Table 1). But, Method 2 estimates the
shear strength of shear-critical specimens better with a slightly
higher average (0.92) and smaller standard deviation (0.067), as
against the proposed method which gives average of 0.89 and
standard deviation of 0.078. Thus, while the NZ Guidelines
provide simple expressions to estimate lateral shear strength of
rectangular RC columns, the proposed method provides
additional physically intuitive insight into the shear resistance
mechanism without adjusting the model empirically.
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CONCLUSION

A simple analytical procedure is presented for estimating the
failure load and for capturing the failure mode and failure
location in RC members with rectangular cross-section.
Comparison of estimates from the Proposed Method with
experimental results available in literature suggests that the
proposed method provides results with reliable accuracy for a
large range of (L/H) ratio. The method helps in identifying the
possible mode of damage for assessment of existing RC
members. In addition, the proposed V-M interaction diagram
explains in a simple way the shear resistance mechanism of RC
members under combined action of P-V-M. In the Proposed
Method, the following effects are not considered: (a) strain
compatibility, (b) strain rate including that of reversed cyclic
loading, and (c) deficiencies in detailing of reinforcing bars and
bond strength.
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