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ABSTRACT 

Methods for the seismic analysis of dams have improved extensively in the last several decades. Advanced 

numerical models have become more feasible and constitute the basis of improved procedures for design and 

assessment. A probabilistic framework is required to manage the various sources of uncertainty that may 

impact system performance and fragility analysis is a promising approach for depicting conditional 

probabilities of limit state exceedance under such uncertainties. However, the effect of model parameter 

variation on the seismic fragility analysis of structures with complex numerical models, such as dams, is 

frequently overlooked due to the costly and time-consuming revaluation of the numerical model. To improve 

the seismic assessment of such structures by jointly reducing the computational burden, this study proposes 

the implementation of a polynomial response surface metamodel to emulate the response of the system. The 

latter will be computationally and visually validated and used to predict the continuous relative maximum 

base sliding of the dam in order to build fragility functions and show the effect of modelling parameter 

variation. The resulting fragility functions are used to assess the seismic performance of the dam and 

formulate recommendations with respect to the model parameters. To establish admissible ranges of the 

model parameters in line with the current guidelines for seismic safety, load cases corresponding to return 

periods for the dam classification are used to attain target performance limit states. 

 

INTRODUCTION 

The consequences of dam failure can be substantial in terms of 

both casualties and economic and environmental damage. Thus, 

a dam must maintain its structural integrity in the face of 

different hazards and loading conditions that arise during 

construction, normal operations, and extreme environmental 

events. Therefore, dam safety is given the highest priority. 

Many dams were built more than 50 years ago [1]. Since that 

time, important advances in the methodologies for evaluating 

natural hazards have been made, causing the review and 

modification of design guidelines, and in some cases, the 

modification has been significant.  

With the increasing knowledge of natural hazard evaluation, 

material behaviour, and structural analyses, a growing number 

of dams fail to meet the revised safety criteria that incorporate 

new and updated information. Based on this, dam engineering 

codes and guidelines have started to shift towards performance-

based engineering design, which seeks to improve risk 

informed decision-making by incorporating methods with 

strong scientific and probabilistic bases. Consequently, the 

combination of ageing and its associated problems with new 

methods for estimating seismic loads, together with increasing 

societal demand to ensure higher levels of safety and the 

importance of the hydroelectric industry, has resulted in the 

need to review and upgrade the methods of safety analysis for 

dams.  

Traditionally, dams were evaluated using deterministic analysis 

under an extreme event. Deterministic methods are often 

considered too conservative or even unsafe in some cases due 

to the use of extreme load cases with very low probabilities of 

occurrence in addition to neglecting different sources of 

uncertainty [2-4]. Thus, there is a need to move towards more 

refined methods to consider uncertainties inherent in the 

problem of dam safety assessment under extreme events. For 

these reasons, probabilistic-based methods have arisen as a 

useful tool in dam safety, and the results have been promising 

in recent studies [5-9]. However, the use of probabilistic 

methods for dams within a normative framework has not been 

well developed, although increasing research is being 

conducted. The most recent guidelines for the design and 

analysis of gravity dams include probabilistic notions for the 

assessment of these structures [10-13].  

Within these probabilistic-based tools, fragility functions have 

become increasingly popular for the assessment of dams, 

particularly under seismic loads [14]. Frequently, these 

functions are generated using a single parameter to relate the 

level of shaking to the expected damage, rendering the analysis 

highly dependent on the selected seismic intensity measure 

(IM). To overcome this, the estimation of the fragility of the 

system can be potentially improved by increasing the number 

of predictor parameters. In this way, a more complete 

description of the ground motion properties can be obtained 

[15]. Consequently, the use of multiparameter models to predict 

the response of a certain structure is increasingly being used 

[14-16]. However, such methods often require a large number 

of nonlinear dynamic analyses of complex finite element 

models (FEMs). The substantial computational time may be 

reduced using machine learning techniques to develop 

surrogate or metamodels, which are engineering methods used 

when an outcome of interest cannot be easily directly evaluated, 

so a model of the outcome is used instead [17]. 

The joint application of numerical models, probabilistic 

approaches, and machine learning has gained considerable 

interest in the literature in recent years for engineering design 

and structural reliability [18-20]. This combination is justified 

by the significant randomness that characterizes not only the 

seismic events but also the structural system itself. Machine 

learning techniques within a seismic fragility framework have 
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found recent applications in vulnerability assessments of 

buildings and bridges, among other structures [21-23]. 

Similarly, for dam-type structures, an extensive comparison 

between machine-learning data-based predictive models for 

monitoring the dam behaviour can be found in Salazar et al. 

(2015) [24], while Hariri-Ardebili and Pourkamali-Anaraki 

(2017) [25] and Hariri-Ardebili (2018) [26] applied machine 

learning techniques to perform reliability analyses applied to 

gravity dams against flooding, earthquakes, and ageing. More 

recently, Segura et al. (2020) [27] provided insight into viable 

metamodels for the seismic assessment of gravity dams for use 

in fragility analysis. However, there’s still a need to further 

explore the correlation between the parameters defining the 

model configurations, including other relevant limit states for 

gravity dams, and the joint model parameter variations impact 

in the fragility analysis. 

Thus, to improve and expedite the seismic assessment of gravity 

dams, this study proposes the use of a metamodel to emulate the 

seismic behaviour of the dam. The surrogate is built considering 

the modelling parameters (MP) in the numerical model and 

several seismic intensity measures to properly depict the 

seismic scenario likely to occur at the dam site. The latter is 

used to predict the continuous relative maximum base sliding 

of the dam to generate fragility functions. These fragility 

functions account for the effects of the variation in the 

parameters involved on the calculation of the response of the 

dam to enhance the accuracy of the fragility estimates. In 

addition, design parameter recommendations, that correspond 

to the modelling parameters explored, are formulated with 

respect to the return periods prescribed by safety guidelines. 

The proposed methodology is applied to a gravity dam located 

in north-eastern Canada. 

METAMODEL GENERATION 

Machine learning models are trained using data with specific 

features. The way in which the data are structured helps the 

models to learn and develop relationships between these 

features. A well-processed training set is required to build a 

robust model, which in turn generates accurate results [17].  

Following traditional strategies specific for computer 

simulations [28], in this study, a metamodel was developed to 

approximate the continuous seismic response of the dam. The 

procedure used to generate the metamodel can be summarized 

as follows: (i) develop an experimental design matrix for the 

finite element simulations to generate the sample points 

representing the different configurations of the system, (ii) 

conduct finite element simulations for each row of the 

experimental matrix, and (iii) fit regression metamodels to the 

training dataset. The subsequent sections will detail these steps.  

Experimental Design Matrix 

To build a robust model, one must keep in mind the flow of 

operations involved in building a quality dataset. Moreover, to 

minimize the associated cost of running a dynamic nonlinear 

FEM while analysing an adequate number of loading conditions 

and structural system configurations, an appropriate 

experimental design method should be used. Loading and 

material parameters likely to affect the seismic response of the 

structure should be considered, and their associated ranges 

should be based on experimental data or values found in the 

literature.  

In the context of this study, Latin Hypercube sampling (LHS) 

is adopted to generate the training dataset representing the 

different configurations of the system under study. This 

sampling technique was selected because of its ability to divide 

the desired range of values for each of the m parameters into n 

equiprobable intervals and then select a sample once from each 

interval to ensure that the set of samples reflects the entire range 

of the parameters [29]. 

The rows of this Latin Hypercube experimental design matrix 

X are then paired with a suite of n ground motions with varying 

intensity measures. Hence, the dimensions of the original Latin 

Hypercube experimental design matrix are n × m. The set of 

considered parameters was selected by taking into account the 

input parameters in the numerical model and random variables 

(RV) frequently considered for probabilistic analyses in the 

literature [5,9,30].  

Table 1 presents the modelling parameters that were considered 

as random variables in the analysis of the dam response and for 

which the uncertainty was properly included through the 

probability distribution function (PDF). All remaining input 

parameters were kept constant and represented by their best 

estimate values. For the studied dam, owing to the limited 

availability of material investigations, the probability 

distributions were defined using the empirical data of similar 

dams. The uniform distribution was used for all parameters 

except for damping, where a log-normal distribution was 

assumed [31] since it is the maximum entropy probability 

distribution when data are limited to an upper and lower bound.  

Finite Element Simulations 

In the context of this study, 250 samples of the FEM were 

generated with LHS as a trade-off between the available 

computational resources and time. The maximum relative 

sliding at the base was the output of interest, and it was 

computed from nonlinear simulations. 

Numerical Model 

A finite element model of the structure that considers the 

nonlinearities was developed to analyse the dynamic seismic 

response under vertical and horizontal ground motions. The 

case study dam includes 19 unkeyed monoliths, a maximum 

crest height of 78 m, and a crest length of 300 m. The width is 

4.6 m at the top and 62 m at the base of the largest monolith, as 

shown in Figure 1(a). The dam rests on a foundation consisting 

mainly of anorthosite gabbro and granitic gneiss [32], which 

Table 1: Modelling parameter PDFs. 

Parameters Designation PDF Distribution parameters 

Concrete–rock tensile strength (MPa) CRT Uniform L = 0.2         U = 1.5 

Concrete–concrete tensile strength (MPa) CCT Uniform L = 0.3         U = 2.0 

Concrete–rock cohesion (MPa) CRC Uniform L = 0.3         U = 2.0 

Concrete–concrete cohesion (MPa) CCC Uniform L = 0.9         U = 2.5 

Concrete–rock angle of friction (°) CRF Uniform L = 42          U = 55 

Concrete–concrete angle of friction (°) CCF Uniform L = 42          U = 55 

Drain efficiency (%) DR Uniform L = 0.0         U = 66 

Concrete damping (%) CD Log-Normal   λ = −2.99     ζ = 0.35 
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corresponds to hard rock (VS30 > 1500 m/s). Due to its well-

documented dynamic behaviour, forced vibration test results 

were used to calibrate the dynamic properties of the numerical 

dam model [32]. 

 

Figure 1: (a) Cross section and (b) FEM scheme. 

Due to the presence of contraction joints, the interaction 

between the blocks of the dam is not significant enough to 

justify the realization of a complex 3D model. Hence, the tallest 

monolith of the dam was considered representative of the 

system. A numerical model was developed following the 

recommendations of Segura et al. (2019) [9] and the United 

States Bureau of Reclamation (USBR) [33]. The dam-reservoir-

foundation (DRF) system was modelled using the computer 

software LS-Dyna, and the different model features are shown 

in Figure 1(b).  

The reservoir was modelled with compressible fluid elements, 

while the concrete body of the dam and the rock foundation 

were modelled with linear elastic materials. The validation of 

the dynamic characteristics was based on the fundamental 

period of the system and global damping. Because of the type 

of element used to model the reservoir in the LS-Dyna model, 

a modal analysis could not be performed. Therefore, a free 

vibration test was simulated to estimate the fundamental period 

and the damping of the system. Considering gravity loads only, 

a force was applied at the crest of the block in the upstream–

downstream direction, and then suddenly withdrawn. The 

recorded horizontal displacement time series of a node at the 

crest of the block was then used to estimate the fundamental 

period of the system through the calculation of the Fourier 

spectrum and the global damping was approximated using the 

logarithmic decrement. Further details of the modeling 

assumptions and validation of the numerical model can be 

found in Segura et al. (2019) [9] and Bernier et al. (2016) [44]. 

By modifying the properties of the dam and the foundation 

materials, the fundamental period and total damping of the DRF 

system were 0.25 s and 2.64% respectively, which matches the 

results from in situ forced vibration tests [32]. Only one loading 

case is considered to analyse the seismic response of the case 

study structure, which includes the self-weight of the block, 

hydrostatic and hydrodynamic loads exerted by the reservoir on 

the block, uplift pressures at the concrete-rock contact, and 

horizontal and vertical seismic loads. 

Seismic Scenario Definition 

To proceed with the seismic assessment of the DRF system, a 

representative set of ground motion time series (GMTS) which 

properly accounts for the aleatory uncertainty is necessary [34]. 

Although eastern Canada is located in a stable zone, the 

occurrence of several major earthquakes in the southeast of the 

country led to the consideration of this area as a moderate 

seismic zone. 

Using the computer software OpenQuake, a probabilistic 

seismic hazard analysis (PSHA) was performed at the dam site 

to characterize target earthquake scenarios at various intensity 

levels. The most recent hazard model for the south-eastern 

quadrant, on which the seismic provisions of the 2015 National 

Building Code of Canada (NBCC) [35] are based, was 

considered for this study. Empirical ground motion models 

were provided in the form of lookup tables (based on Atkinson 

and Adams (2013) [36]) were used together with the considered 

sources. The hazard levels were defined in terms of spectral 

acceleration at the fundamental period of the structure [Sa(T1)] 

to conveniently cover return periods up to 30000 years.  

To select a representative set of ground motion time series, the 

generalized conditional intensity measure (GCIM) 

approach [37] was adopted. The purpose of using the GCIM 

approach is to include the most influential seismic intensity 

measures with respect to the structural response. To this end, 

the vertical spectral acceleration SaV was included in the 

analysis because of its influence in heavy structures of this type 

as well as the peak ground velocity (PGV) given its capacity to 

correlate with the output of interest while being a structure-

independent ground-motion scalar IM [38]. Consequently, the 

set of considered IMs in the GCIM was {SaH(0.2T1:0.09:2T1); 

SaV(0.2T1:0.09:2T1); PGV}, leading to a total of 41 IMs to be 

considered in addition to the conditioning IM, Sa(T1). It should 

be noted that the range of periods considered for the horizontal 

and vertical spectral accelerations was determined as proposed 

by Baker [39].  

The computed GCIM distribution was then used to select 250 

ground motion records to be paired with the rows of the 

experimental design matrix. The records were selected from the 

PEER NGA-West2 database [40] owing to the limited 

availability of strong ground-motion records in the PEER 

NGA-East database [41]. Additional details on the PSHA, the 

record selection procedure and the distribution of intensity 

measures across the ground motion set can be found in Segura 

et al. (2018) [29] and Segura et al. (2020) [27].  

Surrogate Model 

For each row, xi of the experimental design matrix, one finite 

element simulation was conducted. The structural response 

considered herein was the maximum relative sliding δmax. 

Therefore, a response vector y[250 × 1] was produced as a result 

of the FEM simulation to train a regression metamodel. To 

reduce the computational expense, the surrogate acts as a ‘curve 

fit’ to the generated training dataset so that results may be 

predicted without recourse to the expensive simulation code.  

The regression technique considered in this study is within an 

adaptive scheme, i.e., the functions in the metamodel can 
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change according to the input data to reduce the burden of 

manual selection of the best demand and capacity predictors in 

the metamodel. To select the best predictors, the stepwise 

regression algorithm in MATLAB was used when fitting the 

metamodels. The algorithm starts with a constant term to 

predict the response. In the next step, one predictor is added to 

the model, and the performance of the model is evaluated based 

on the Bayesian information criterion (BIC). If the model 

performance improves, then the added term is kept; otherwise, 

it is removed, and this process is repeated until all proposed 

predictors are tested. Once the regression metamodel has been 

trained, the predictive capacities are evaluated based on cross-

validation (CV) goodness-of-fit estimates. Within this 

framework, a polynomial response surface of order 4 (PRS O4) 

was considered because it has been shown as one of the best-

performing metamodels for the seismic analysis of gravity dams 

[27]. 

Polynomial Response Surface 

The polynomial response surface is an emerging technique that 

can provide a nuanced view of relationships between 

combinations of several predictor variables and an outcome 

variable [28]. In this study, it is employed to quantify the sliding 

response of gravity dams and used to assess the potential for 

reaching the sliding limit state. Traditionally, lower-order 

polynomials (up to second order) are used as metamodels in 

reliability problems, yet these functions may not be able to 

capture highly nonlinear behaviour. Regarding higher-order 

polynomials, even if these functions have higher predictive 

accuracy, they tend to overfit the data. Polynomials up to the 

4th order were implemented to avoid overfitting issues, along 

with testing cross-validated goodness of fit measures. 

The sparse polynomial response surface can be represented as: 

𝑦 = 𝛉⊺𝑔(𝐗) + 𝑣 (1) 

where 𝑦 is the output of interest as a result of the finite element 

model simulation; 𝑔 is a column vector that includes 

explanatory functions such as logarithm and natural logarithm 

transformations, powers, and cross-products of powers of the 

predictors in X up to a predefined degree; 𝛉⊺ is the row vector 

of model parameters, which are unknown constant coefficients; 

and 𝑣 is the model error due to the lack of fit of the surrogate 

model. In this study, in addition to the modelling parameters of 

Table 1, the set of predictors includes multivariate log-normally 

distributed seismic IMs extracted from the GMTS, such as 

horizontal spectral acceleration and velocity at the fundamental 

period, horizontal peak ground acceleration, velocity and 

displacement, vertical peak ground acceleration, spectrum 

intensity, Arias intensity, significant duration and earthquake 

angular frequency. 

The resulting metamodel is a function of three model 

parameters and three seismic intensity measures, as can be seen 

from Eq. 2: 

𝛿𝑚𝑎𝑥 = 19.75 − 1.11DR − 25.46PGAV − 10.96 log(CRF) +
0.99 log(IA) + 9.95 log(PGAV) − 0.08 log(CRC)3 −
0.38 log(IA)3 − 1.56 log(PGV)2 − 0.40DR log(IA) +
0.11PGAV log(CRC)3 + 0.04 log(CRF) log(CRC)3 −
0.11 log(IA)4 − 0.04 log(PGAV) log(CRC)3 +
 0.009 log(PGV)2 log(CRC)3                                    (2) 

where DR, CRC, and CRF are the drain efficiency, concrete-

rock cohesion, and concrete-rock angle of friction, respectively, 

and, PGAV, IA, and PGV are the peak ground acceleration in the 

vertical direction, Arias intensity, and peak ground velocity, 

respectively.  

Goodness-of-Fit 

To evaluate the prediction accuracy of the surrogate, global and 

local goodness-of fit estimators are calculated within a 5-fold 

cross-validation (5-CV) procedure [17]. In this procedure, the 

dataset is randomly divided into 𝑘 = 5 sets, and the surrogate 

is trained using 𝑘 − 1 sets, with the remaining set used as test 

data. This procedure is repeated 5 times; thus, 5-CV provides 

an estimate of the predictive accuracy of the model for unknown 

data. Using a new fold as the test set, these estimators are 

obtained at each fold, and the average value of the five 

repetitions is used as the model goodness-of-fit. As such, the 

root mean square error (RMSE), relative maximum absolute 

error (RMAE), and coefficient of determination (R2) 

corresponding to the PRS O4 are 0.321, 0.898, and 0.887, 

respectively. 

To evaluate the surrogate lack of fit with the FEM simulations 

[Figure 2(a)], a normally distributed model error term 𝑣 with 

zero mean and standard deviation equal to the RMSE is added, 

as shown in Eqs. 3-4: 

𝛿𝑚𝑎𝑥̂ = δ𝑚𝑎𝑥 + 𝑣        (3) 

𝑣 ~ 𝒩(0, 0.3212) (4) 

From Figure 2(b), it can be seen that the residual normal 

distribution error hypothesis is followed. 

 

Figure 2: Whole training set: (a) predicted vs. 

simulated values and (b) residual frequency. 

 Damage Limit States 

The first step toward fragility analysis is the identification of 

the limit states that are relevant to the system performance. In 

recent years, typical damage modes that could lead to the 

potential collapse of dams after a seismic event have been 

identified, and seismic damage levels have been established. 

Preliminary analyses identified sliding as the critical failure 

mode for the case study dam [44], and other failure modes only 

occur after sliding has already been observed. As a result, a 

single limit state is considered in this study, that is, concrete-to-
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rock sliding at the base of the dam interface. Each limit state 

was characterized by the sliding damage states presented in 

Table 2. 

Dimensionality Reduction and Failure Surface 

Visualization 

The goodness-of-fit estimators have shown the satisfactory 

performance of the PRS O4 to predict the seismic response of 

the dam. However, prior studies have suggested potential 

limitations of applying metamodels for approximating limit 

state functions when high-curvature failure surfaces might exist 

[16]. To this end, dam failure surfaces under seismic events 

need to be explored to validate the applicability of the 

metamodel. 

As pointed out by Ghosh et al. (2013) [16], a common challenge 

in the literature is the lack of failure surface visualization tools 

for high-dimensional limit state functions. This problem is 

present in the adopted 6-dimensional metamodel for the case 

study dam. To address this obstacle, the dimensionality 

reduction method proposed by Hurtado (2012) [42] is adopted. 

This provides a simple yet powerful technique to visualize 

multidimensional problems in two-dimensional failure 

surfaces.  

The main steps when applying the dimensionality reduction 

method in this study can be summarized as follows: 

(i) formulation of the limit state equations according to Eq. 4, 

where LSi is the considered damage state; (ii) determination of 

the design point vector at which the limit state function LSf is 

minimum with the Hasofer and Lind algorithm [43]; 

(iii) computation of the vector w to the centre of mass of the 

failure domain from Eq. 5, where ∇𝐿𝑆𝑓(𝑿∗) is the value of the 

gradient of the limit state function evaluated at the design point; 

(iv) selection of random vectors xR in the sampling space and 

classifying them as ‘exceedance’ [LSf (xR) < 0] or 

‘¬exceedance’ [LSf (xR) > 0], then calculating the norm of these 

vectors (Vr,1) and the cosine between xR and w (Vr,2); and (v) 

repetition of step (iv) within an LHS strategy to generate 104 

samples. 

𝐿𝑆𝑓 = 𝐿𝑆𝑖 −  𝛿𝑚𝑎𝑥̂        (4) 

𝐰 = −
∇𝐿𝑆𝑓(𝑿∗)

‖∇𝐿𝑆𝑓(𝑿∗)‖
        (5) 

By plotting Vr,1 vs. Vr,2 while accounting for the 

exceedance/¬exceedance classification, a visualization of the 

low curvature multidimensional failure surface in two 

dimensions can be obtained, as displayed in Figure 3. 

It should be noticed that there is an evident delimitation 

between these two classifications. Sigmoid functions G(Vr,1) 

were fit to the data to attempt to describe the two domains in a 

parametric manner, as shown in Figure 3(e). However, even if 

the demarcation between the domains is clear, further studies 

must be conducted regarding the parametric definition of 

G(Vr,1) to better distinguish between the damage states. The 

main outcome of this analysis is that the developed 

multidimensional metamodel has been validated 

computationally and visually and could be then used to perform 

a seismic fragility analysis. 

SEISMIC FRAGILITY ANALYSIS 

Estimation of fragility functions using dynamic structural 

analysis has been proven to be an important step in a number of 

seismic assessment procedures and a reliable instrument to 

support rational risk-mitigation decision-making. To optimize 

the computational resources, the metamodel emulating the 

seismic behaviour of the dam will be used instead of the FEM 

for the fragility analysis.

 

Table 2: Sliding limit states. 

Damage state Base sliding (mm) 

LS0 - Slight 5 

LS1 - Moderate 25 

LS2 - Extensive 50 

LS3 - Complete 150 

 

Figure 3: Multidimensional failure domain visualization. 
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Metamodel Samples and Fragility Point Estimates 

Regarding the generation of samples where the surrogate will 

be evaluated to predict the dam’s seismic response, 

independence between all modelling parameters was assumed 

to generate 5 × 105 samples with LHS. 

The procedure to generate the point fragility estimates is 

displayed in Figure 4(a). A stratified sampling strategy based 

on multiple stripe analysis (MSA) [45] is adopted, where the 

two selected parameters are divided into N and M intensity 

levels. While one parameter is kept constant, the other is varied 

among the different levels, and its response is approximated 

with the surrogate. The point fragility estimate is calculated 

from a frequentist point of view as the number of samples with 

specific IM and MP intensity levels that exceed a determined 

limit state over the total number of samples generated with these 

specific MPs and IMs, according to Eq. 6, 

𝑃𝑓,𝑖 =
∑ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝐿𝑆>𝐿𝑆𝑖|𝐼𝑀=𝑖𝑚,𝑀𝑃=𝑚𝑝)

∑ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝐼𝑀=𝑖𝑚,𝑀𝑃=𝑚𝑝)
        (6) 

where LSi indicates the damage state of interest in Table 2 and 

MP and IM are the modelling parameters and seismic IM 

involved in the prediction of the dam’s seismic response with 

the metamodel, respectively.  

The range of each considered parameter was divided into 100 

intervals, so 100 samples were considered for each point 

estimate. As a result, 104 fragility point estimates were 

generated for each limit state. While Figure 4 illustrates the 

process for scalar IM and MP, the approach is similar across a 

multi-dimensional space with vector IMs and MP. 

Fragility Functions 

Fragility analysis depicts the uncertainty in the safety margin 

with respect to specified hazard levels including design basis 

and review-level events [4]. Given that point fragility estimates 

are generated as a function of two parameters, it is possible to 

generate fragility curves as a function of one of these 

parameters, while the other one is kept constant and equal to a 

determined value, as shown in Figure 4(b). To estimate the 

functional form of the parametric fragility curves, normal, log-

normal, and Weibull cumulative distribution functions (CDF) 

were fit to the data points. Following the recommendations of 

Baker [45], when using MSA, the maximum likelihood 

estimation (MLE) method was employed to fit the CDFs to the 

fragility point estimates and to approximate its parameters. 

Two different cases were taken into account to generate 

fragility estimates as a function of two parameters. In the first 

case, as expected, correlation between the seismic IMs involved 

in the metamodel calculation was assumed to generate the 

samples. As a result, fragility estimates as a function of the PGV 

and each of the MPs involved in the prediction of the dam 

response were generated. In the second case, although less 

realistic, independence between the seismic IMs was 

considered to generate the metamodel’s samples. Accordingly, 

point fragility estimates as a function of two seismic IMs were 

generated to consider more general cases where the seismic 

scenario is not well defined. 

EXPECTED SEISMIC PERFORMANCE 

Uncertainties prevail in the analysis of dam breaching 

consequences, particularly in the evaluation of the seismic 

hazard and the influence of variations in the dam material 

properties. Hence, it is important to consider various sources of 

uncertainties in dam safety assessment [1]. By formally 

including the modelling parameters and seismic loading 

uncertainty in the fragility analysis, it is possible to limit the 

ranges of these parameters to achieve a target performance 

when following safety guidelines.  

Earthquake Loading Conditions 

The usual, unusual, and extreme loading cases can be 

considered from the perspective of an event’s annual 

exceedance probability. Critical loads such as seismic loads 

may be characterized on the basis of occurrence or exceedance 

probabilities. The actual probability of failure and the reserves 

in structural capacity can only be explicitly evaluated by using 

a probabilistic approach. Within this procedure, the risks are 

managed implicitly, often by application of a classification 

scheme that reflects the potential consequences of dam failure 

[46]. 

Table 3 lists the Canadian Dam Association (CDA) frequency-

based target levels for consequence categories. This table is 

based on the concept of ensuring safety up to the physical limits 

of earthquake events, which the maximum credible earthquake 

MCE attempts to approximate.  

 

Figure 4: Point fragility estimate and fragility curve (Fc) generation as a function of two parameters. 

Table 3: CDA earthquakes’ annual probability of 

exceedance. 

Dam class Annual probability of exceedance 

Low 1/100 

Significant Between 1/100 and 1/1000 

High 1/2475 

Very high Between 1/2475 and 1/10000 

Extreme >1/10000 or MCE 
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Traditional risk assessment methods have generally been 

successful in evaluating damage or consequences when 

considering seismic events defined with a particular return 

period (RP). As such, these traditional methods remain essential 

tools for dam design and safety management. In this study, the 

dam classification and return periods corresponding to Table 3 

are used to assess the impact of the seismic event definition with 

respect to different RP in the fragility analysis and define the 

target seismic scenarios for the case study dam. 

Return Period Determination Effect on Fragility Analysis 

A structure is potentially exposed throughout its lifetime to all 

possibilities of occurrence of ground motion intensities at a 

given site, as characterized by the site-specific seismic hazard 

curve. Traditional vulnerability assessment methods develop 

fragility functions by using a single parameter to relate the level 

of shaking to the expected damage. Single-parameter demand 

models and fragility curves are highly dependent on the selected 

seismic intensity measure (IM), which consequently influences 

the robustness of predictions.  

To overcome this, fragility functions to estimate the probability 

of exceeding a LS given PGV were generated to compare the 

variability of seismic fragility functions when the return periods 

are defined with single and multiple parameters. To this end, 

the values of the seismic IMs were bounded to cover the range 

of values corresponding to return periods from 100–15,000 

years, as shown in Table 4. All fragility curves were generated 

using the methodology illustrated in Figure 4(b). The 

uncertainty in the metamodel’s parameters, not explicitly 

shown in the curve, was propagated in the analysis by sampling 

from the range of possible values, as depicted in Table 1 and 

Table 4. 

Table 4: Metamodel seismic IM considered range of 

values. 

Seismic IM Range 

PGAV 0.0–0.15 g 

PGV 0.0–15.0 cm/s 

IA 0.0–1.5 cm/s 

Uncorrelated Seismic IM Case 

To consider more general cases where the seismic scenario is 

not well-defined, fragility curves were generated where the 

correlation between the seismic IMs was neglected. The 

fragility point estimates were generated as a function of PGV 

and IA, the two most influential seismic IMs. The uncertainty 

due to the modelling parameters and PGAV was propagated in 

the analysis by sampling these parameters with LHS according 

to their respective ranges of usable values. Figure 5(a)-(d) 

presents a boxplot of the point fragility estimates as a function 

of PGV. The central mark indicates the median of the Pf values 

at each PGV intensity level, and the bottom and top edges of 

the box indicate the 25th and 75th percentiles, respectively. The 

whiskers extend to the most extreme data points that are not 

considered outliers. As can be seen, the variability in the 

fragility estimates increases with increasing PGV values and 

decreasing LS severity. To complement this analysis, 

Figure 5(e)-(h) presents fragility curves in red as a function of 

a single IM, PGV, and fragility curves as defined in Figure 4 for 

PGV and constant IA corresponding to different return periods 

(IA,RP). It was observed that for most LSs, the obtained fragility 

curve is closer to the upper fragility curve resulting from the IA 

values corresponding to RP = 104 years, evidencing an 

estimation robustness that is highly dependent on the IM used 

to describe the seismic event. As an illustration, if for the MCE 

the corresponding is PGV = 15 cm/s, for LS3 the probability of 

exceedance is 0.06 for a seismic event characterized solely by 

PGV and 0.095 for a seismic event defined with PGV and IA. 

Similarly, it should be noted that by using traditional single-

variate fragility functions where the seismic hazard is defined 

by only one IM, the fragility is overestimated for RP < 2475 

years and underestimated for RP > 104 years. 

 

Figure 5: Fragility curves with uncorrelated seismic IMs – 

Fc (PGV, IA=IA,RP). 

Correlated Seismic IM Case 

For the case study dam, considering the PSHA and the 

characteristics of the seismic scenario for a specific site, a 

correlation between seismic parameters is to be expected. To 

explicitly consider this within the fragility derivation, the 

realization of these parameters must be sampled from a 

multivariate distribution with their respective correlation 

coefficients when referring to specific cases. The correlation 

coefficients for IMs of interest in the dam seismic performance 

assessment were obtained from the set of GMTS selected to 

train the metamodel and are displayed in Table 5. 

Based on this, the samples of these parameters are taken from a 

joint log-normal distribution with their respective correlation 

coefficients, while the samples for the modelling parameters 

were obtained in the same manner as for the uncorrelated 

seismic IM case. Figure 6 presents fragility curves as a function 

of each of the modelling parameters that depict the probability 

of exceeding a LS for PGV corresponding to a given RP 

(PGVRP). It should be noted that even if the return periods are 

Table 5: Seismic IM correlation coefficients. 

Seismic IM Correlation 

IA-PGAV 0.81 

PGAV-PGV 0.75 

IA-PGV 0.84 
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defined in terms of PGV, the influence of the other seismic IMs 

is considered in the seismic event definition by sampling from 

the joint log-normal distribution. Again, it can be seen that the 

variability in the fragility estimates (Pf) increases for less 

severe LSs, and the modelling parameter variation impact is 

more evident for CRC, followed by DR and CRF. 

Modelling Parameter Recommendations for Desired 

Seismic Performance 

Many situations arise when performing risk analyses for dams 

where insufficient statistical information exists and models for 

calculating probabilities simply do not exist. To estimate the 

quantitative risk, it then becomes necessary to judge the 

likelihood of various events or conditions.  

This can be done qualitatively considering expert engineering 

judgement regarding relevant event probabilities for the failure 

mode being discussed. Probabilities are then estimated or 

assigned using subjective, degree-of-belief probability methods 

[10].   

A subjective probability estimate is the numerical value or 

range of values judged to be believable based upon the available 

evidence. Several authors [10,47-48] developed verbal 

mapping schemes that were adopted for most of the subjective 

probability estimates. Table 6 presents the verbal mapping 

scheme for risk analysis based on the USBR guidelines [10]. 

This approach is adopted herein. 

From Table 3, Table 6, and Figure 6, modelling parameter 

recommendations can be formulated to achieve a desired target 

seismic performance. According to the CDA, the associated risk 

of the case study dam is classified as ‘high’, where the 

population at risk is located in the dam-breach inundation zone, 

the loss of life is estimated as 100 or fewer, and significant loss 

of critical fish or wildlife habitat and very high economic losses 

affecting important infrastructures and services is expected. 

 

Figure 6: Fragility curves with correlated seismic IMs – Fc(MP, PGV=PGVRP). 
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From Table 3, seismic events with an annual probability of 

exceedance of 1/2475 are considered, and the assigned 

probability of exceedance given the event occurrence according 

to Table 6 is ‘very unlikely’. From Figure 6, for the extensive 

and complete damage limit states [(c)(g)(k)-(d)(h)(l)], the 

probability of exceedance Pf is fixed at the lower bound equal 

to 0.1. By intersecting the fragility curve corresponding to 

RP = 2475 years with this probability, modelling parameter 

ranges are defined. Table 7 presents the minimum values that 

should be followed to obtain Pf ≤ 0.1 for LS2 and LS3. It should 

be observed that for the CRF parameter and the LS2 damage 

state, the probability of exceedance is always greater than 0.1 

for the considered range of usable values [Figure 6(k)], so no 

recommendation can be formulated. In other words, changing 

the CRF alone is not sufficient to achieve the targets and the 

joint variation of the MPs should be further explored. 

Table 7: Modelling parameter recommendations. 

Modelling 

parameters 

Extensive damage 

(LS2) 

Complete damage 

(LS3) 

CRC (MPa) >1.45 >0.75  

DR (%) >60 >22 

CRF (°) - >46 

In the same manner, seismic regions can be established to 

define seismic scenarios that provide probabilities of exceeding 

LSs in line with current safety guidelines. For risk category III 

(dam-type structures) and total or partial structural collapse, the 

ASCE-7 (2016) guideline [46] proposes that the maximum 

probability of exceedance should be less than 0.06 for the MCE 

event. Accordingly, from the point fragility estimates 

determined as a function of two seismic IMs (uncorrelated 

case), IA-PGV regions were defined so that the MCE samples 

falling in these regions provide Pf ≤ 0.06 for each LS, as shown 

in Figure 7. 

 CONCLUSIONS 

The main objective of this study was to apply a PRS metamodel 

to improve the seismic fragility assessment of gravity dams by 

generating fragility estimates as a function of several 

parameters and by properly identifying the seismic scenario 

with regard to current guidelines. The two cases analysed for 

the seismic assessment of the case study dam were (i) 

uncorrelated seismic IMs, where the point fragility estimates 

were generated as a function of uncorrelated IA and PGV, and 

(ii) correlated seismic IMs, where the seismic properties were 

taken from a multivariate log-normal distribution and the point 

fragility estimates were generated as a function of PGV and 

each of the MPs. In both cases, fragility functions were 

developed for seismic return periods prescribed by the CDA 

guidelines, and design parameter recommendations were 

formulated based on expert engineering judgement regarding 

relevant event probabilities for the failure mode being 

discussed.  

 

Figure 7: IA-PGV regions. 

For the uncorrelated case, it should be mentioned that the 

proposed fragility functions allow the consideration of more 

general cases and a more efficient definition of the seismic 

demand. Further, fragility functions defining the seismic 

demand using a single IM may create a false sense that safety 

has been achieved under the ultimate seismic loadings. 

Nevertheless, it should be kept in mind that assuming two 

uncorrelated seismic IMs to generate the fragility estimates can 

lead to the consideration of seismic scenarios that are very 

unlikely to occur at the site of the structure during its lifetime. 

Similarly, the correlated case accounts for the variability of the 

modelling parameters in the fragility analysis together with the 

variability in the seismic hazard for a specific site. However, 

the main drawback of this approach is that it fails to include the 

simultaneous effect of these parameter variations and target 

design ranges are identified one parameter at a time.  

Despite the shortcomings discussed above, it should be noted 

that machine learning techniques are promising alternatives 

when assessing the vulnerability of structures with 

computationally complex numerical models. Likewise, the use 

of surrogate models to conduct fragility assessments introduces 

flexibility into the analysis to explore the impacts of different 

parameters. It is believed that, in addition to the specifics of the 

present study, these emerging risk-informed approaches 

provide insight into the influence of parameter variation and 

uncertainties in seismic performance assessment of dams and 

may spur further interactions between engineers and decision-

makers seeking to operate in a risk-based context. 
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