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ABSTRACT 

The Sumatra megathrust zone has five major earthquake sources, namely the Aceh-Andaman, Nias-Simeulue, 

Mentawai-Siberut, Mentawai-Pagai, and Enggano segments. This paper provides seismic activity analysis in 

these five segments via an unobserved process study of tectonic plate movements, which is conducted in two 

cases: each of the five segments independently (Case 1), and a pair of two adjacent segments (Case 2). To do 

this, two specific types of Hidden Markov Models (HMMs), i.e., Poisson-HMMs and Copula-HMMs, dealing 

with unobserved process issues, are applied. In practice, the data used is the annual frequency of mainshock 

earthquakes with a magnitude of Mw ≥ 4.6 that occurred from 1971 to 2018. This data is obtained by working 

out the declustering process and estimating the magnitude of completeness from a particular earthquake 

catalogue. Due to the incompleteness of the data sets, the parameters of the two HMMs are estimated using 

the Expectation-Maximization algorithm. Results show that for Case 1, the model that fits the data for each 

of the five segments is the 3-state Poisson-HMM. The three states, in this instance, stand for the rates of 

seismic activity that correspond to the dynamic level of tectonic plate movements. Furthermore, in Case 2, 

the selected model for the Aceh-Andaman with Nias-Simeulue is the 2-state Gumbel Copula-HMM. 

Meanwhile, for the three groups remaining, namely Nias-Simeulue with Mentawai-Siberut, Mentawai-

Siberut with Mentawai-Pagai, and Mentawai-Pagai with Enggano, the appropriate models are Gaussian, 

Gumbel, and Frank Copulas, respectively. In this case, the number of states represents the seismic activity 

association of two adjacent segments that corresponds to the association level of two adjacent tectonic plate 

dynamics. 

https://doi.org/10.5459/bnzsee.1555  

INTRODUCTION 

In Indonesia, earthquakes are one of the biggest threats to life 

safety and the sustainability of public infrastructure due to the 

fact that this region is located on the Pacific Ring of Fire, which 

is a region with a high level of tectonic plate movements [1]. 

There are three active tectonic plates in Indonesia, namely the 

Eurasian, the Pacific, and the Indo-Australian Plates, that are 

still moving dynamically and sliding past each other. The 

meeting of these tectonic plates forms the subduction zone: an 

area with the potential for major earthquake occurrences [1,2]. 

One of these is the Sumatra megathrust zone, which contains 

five major earthquake sources, namely Aceh-Andaman (AA), 

Nias-Simeulue (NS), Mentawai-Siberut (MS), Mentawai-Pagai 

(MP), and Enggano (EO) segments, as shown in Figure 1 (a). 

The tectonic plate framework of these five segments has varied 

characteristics, where the area with the highest seismic activity 

is the AA segment and the lowest one is the EO segment [3]. 

For this reason, the AA segment is the most hazardous area in 

the Sumatran megathrust zone [2]. A detailed description of the 

tectonic frameworks and seismic hazards of the five major 

earthquake source segments in the Sumatra megathrust zone 

can be seen in Irsyam et al. [2] and McCaffrey [3]. 

Historically, the Sumatra megathrust zone has encountered 

major earthquakes frequently during the past two decades [4]. 

Some of them have caused a large number of deaths and serious 

infrastructure damage [4,5]. For example, the Sumatra-

Andaman earthquake in the AA segment (December 26, 2004; 

Mw 9.1), the Nias-Simeulue earthquake in the NS segment 

(March 28, 2005; Mw 8.6), and the Padang earthquake in the 

MS segment (September 30, 2009; Mw 7.5) [4-6]. Furthermore, 

after two major earthquakes occurred in the AA and NS 

segments, the next one is predicted to occur around the MS and 

MP segments with magnitude Mw > 8, as mentioned by Sieh [7] 

and McCloskey et al. [8]. According to this information, a 

comprehensive study of earthquake risk management in the 

Sumatra megathrust zone through a seismic activity study has 

become an essential issue to be carried out [2].  

Some previous earthquake researchers have discussed the issue 

from geological [9,10], seismological [11,12], and geophysical 

[13,14] points of view, just to name a few. Note that, however, 

this current study takes a different perspective to respond to the 

issue. That is, we provide a seismic activity study based on the 

analysis of an unobserved process of tectonic plate movements. 

The analysis is conducted in two cases, namely each of the five 

segments independently (Case 1), and a pair of two adjacent 

segments (Case 2). To accomplish this, Cases 1 and 2 are 

subjected to two types of Hidden Markov Models (HMMs) 

dealing with an unobserved process analysis, namely Poisson-

HMMs [15-18] and Copula-HMMs [19,20]. The background 

that leads us to use these approaches is expressed as follows.
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Figure 1: Part (a): a map of five segments of major earthquake sources in the Sumatra megathrust zone, with an estimated 

maximum earthquake, 𝑴𝒎𝒂𝒙 (𝑴𝒘), and area (km2) [2]. Part (b): an illustration of the subduction process at plate boundaries 

(https://www.usgs.gov/). Part (c): a directed graph of the basic hidden Markov models (HMMs) [18]. 

Figure 1 (a) shows that earthquakes in the Sumatra megathrust 

zone depend on the tectonic plate movement mechanism 

between the Indo-Australian and Eurasian Plates that meet at 

the boundaries on the seabed [2]. Specifically, the Indo-

Australian Plate is slowly subducting under the continental 

Eurasian Plate in the lithosphere due to convection currents in 

the asthenosphere, as shown in Figure 1 (b). Let us consider that 

𝐷(𝑡) = {𝐷(𝑡): 𝑡 ∈ Ν} is the behavior of unobserved tectonic 

plate dynamics, which describes the levels of tectonic plate 

movements in finite categories, whereas 𝑿𝑖(𝑡) =
{𝑋1(𝑡), … , 𝑋5(𝑡): 𝑡 ∈ Ν} is the random vector of earthquake 

frequencies from the five segments in the Sumatra megathrust 

zone. With this consideration, the dependence model between 

tectonic plate movements and earthquake frequencies can be 

represented in the form of a directed graphical model of 

{𝐷(𝑡), 𝑿𝑖(𝑡)}, as illustrated in Figure 1 (c). However, note that 

there are drawbacks in the implementation, namely that while 

earthquakes were observed, the dynamic of tectonic plates was 

not observed directly [15-17]. This condition makes the 

mathematical modeling of the earthquake issue challenging, 

especially in seismic activity studies. One of the methods that 

can be used to solve this problem is the hidden Markov models 

(HMMs). This model is powerful for modeling generative 

unobservable sequences that can be characterized by an 

underlying process generating an observable sequence [18].  

Furthermore, if we assume that the variable 𝑋𝑖(𝑡) is generated 

from a Poisson distribution and depends only on the current 

state 𝐷(𝑡) (Case 1), with 𝑚 states, then the seismic activity of 

each segment can be analyzed independently using the 𝑚-state 

Poisson-HMMs [15-17]. The number of states 𝑚 in this case 

represents the seismic activity rates that correspond to the 

number of levels of dynamic tectonic plate movement (e.g., 

low, medium, or high dynamics) [2,3]. Furthermore, if the 

condition of spatial dependence between two adjacent segments 

exists (case 2), then to resolve this issue, the Copula models can 

be applied [19,20]. Therefore, the earthquake issue in setting 

consideration for case 2 is performed by a mixture of Copula 

models and HMMs, denoted by the 𝑚-state Copula-HMMs. 

Here, the number of states 𝑚 represents the seismic activity 

associations of two adjacent segments and corresponds to the 

level of association of two adjacent tectonic dynamics, e.g., 

weak, moderate, or strong associations. The parameters of the 

two probability models are estimated based on the seismicity 

data, which is obtained from a particular earthquake catalog.  

The seismicity data commonly used in seismic activity studies 

is the earthquake frequencies with a certain magnitude 

threshold and time interval [15-17,21,22]. In other words, the 

characteristics of the seismicity data are categorized as discrete 

variables. However, this condition becomes a serious problem 

in performing the second case due to the non-uniqueness of the 

Copula models for marginal discrete variables [23]. To 

overcome this problem, the marginal variables should be 

transformed into continuous variables using the Continuous 

Extension technique developed by Denuit and Lambert [24]. 

Thus, the Copulas parameter estimation of continued variables 

can be worked out using the same procedure as in the 

continuous variables issue [25]. The advantage of this technique 

is used in the current study.  

To the best of our knowledge, the probability models that we 

proposed, in particular the 𝑚-state Copula-HMMs that worked 

with the Continuous Extension technique, are rarely discussed 

in earthquake engineering studies. Thus, it is hoped that the 

results of this study will make a significant contribution to the 

earthquake engineering literature and the earthquake risk 

management issues, especially in the Sumatra megathrust zone. 

The outline of this paper is divided into five sections. Section 1 

gives an introduction to the seismic issues in the Sumatra 

subduction zone and the background of using the 𝑚-state 

Poisson-HMMs and 𝑚-state Copula-HMMs approaches. 

Section 2 provides a brief introduction to the mathematical 

tools, namely HMMs, Poisson distribution, Copula models, and 

Continuous Extension technique, which will be used in this 

paper in a self-contained manner. In Section 3, we describe the 

seismicity data preparation and the data analysis procedure. 

Meanwhile, the results and discussion are presented in Section 

4. Finally, conclusions are written in Section 5. 

𝑿(1) 𝑿(2) 𝑿(3) 𝑿(𝑇) 

𝐷(1) 𝐷(2) 𝐷(3) 𝐷(𝑇) 
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Mw = 8.9; 400 Km2 

 
 

Mentawai-Siberut 
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MATHEMATICAL TOOLS DESCRIPTION 

Four mathematical concepts, namely the hidden Markov 

models, Poisson distribution, bivariate Copula models, and the 

Continuous Extension technique, are discussed in this section. 

Furthermore, a detailed discussion of those concepts as well as 

a description of their properties can be seen in the books and 

articles that we refer to. For the first and second concepts, we 

refer to the book by Zucchini et al. [18]. For the third concept, 

we refer to the books of Joe [19], Nelsen [20], and Hofert et al. 

[26]. For the last concept, we refer to the articles of Denuit and 

Lambert [25], Stevens [27], and Rizal et al. [28]. 

Hidden Markov Models 

From a theoretical perspective, HMMs are defined as discrete-

time processes that consist of two random processes [18]. The 

first part is a finite-state Markov chain  𝐷(𝑡) on 𝑚 states, which 

is unobservable and thus referred to as a hidden process. In 

addition, the sequence 𝐷(𝑡) satisfies the Markov property; i.e., 

given the present, the future does not depend on the past. The 

second part is an observable of the state-dependent process 𝑋(𝑡) 

such that, for a given 𝐷(𝑡), the distribution of 𝑋(𝑡) depends only 

on the present state 𝐷(𝑡) and not on previous or observations. 

This schema is represented graphically in part (c) of Figure 1, 

which can be applied to univariate and multivariate cases.  

The parameters of HMMs are characterized in three parts, 

namely the transition probability matrix of the Markov chain, 

stationary distribution, and probability distribution that are 

related to the states 𝐷(𝑡). Each state is associated with a 

probability density function 𝑓 from the same parametric family. 

When 𝐷(𝑡) = 𝑑(𝑡) is given, 𝑋(𝑡) takes the values 𝑥(𝑡) with 

probability 𝑃(𝑥(𝑡)|𝑑(𝑡)). In the univariate case, for instance, if 

we assume that each observation is generated from a discrete 

distribution, namely the Poisson distribution, then probability 

takes the form 𝑃(𝑥(𝑡)|𝑑(𝑡) = 𝑠) = Poisson (𝜆𝑠) where 𝜆𝑠 ≥ 0 

are the parameters of the Poisson distribution and 𝑥(𝑡) is a non-

negative integer value, for all 𝑡 = 1,2, … , 𝑇 and 𝑠 = 1,2, … , 𝑚. 

Meanwhile, for the bivariate case 𝑿 =  (𝑋1(𝑡), 𝑋2(𝑡)), if it is 

assumed that 𝒙 = (𝑥1(𝑡), 𝑥2(𝑡)) ∈ 𝑅2 is generated from a joint 

distribution of two variables 𝑔(𝑥1, 𝑥2;  𝜗), with 𝜗 represents the 

set parameter model, then 𝑓 takes the form: 

𝑃(𝒙(𝑡)|𝑑(𝑡) = 𝑠) = 𝑔(𝑥1, 𝑥2;  𝜗𝑠), (1) 

In this article, we only determine the likelihood function of 

HMMs in the bivariate case, as calculated under 𝑚-state 

HMMs, which has the transition probability matrix 𝚪 = 𝛾𝑟𝑠 =
𝑃(𝐷(𝑡) = 𝑠|𝐷(𝑡 − 1) = 𝑟), stationary distribution 𝜹 implied by 

𝚪, and state-dependent probability function 𝑔𝜗𝑐(𝑡)
=

𝑔(𝑥1, 𝑥2;  𝜗𝑠). Subsequently, if we denote with 𝚿 =
(𝜗1, 𝜗2, … , 𝜗𝑚, 𝚪) the parameter of models to be estimated, then 

the complete-data log-likelihood of HMMs is as follows: 

log (𝑃(𝑿, 𝐷)) 

=  log (𝜹𝑐(1) ∏ 𝛾𝑑(𝑡−1),𝑑(𝑡)

𝑇

𝑡=2

∏ 𝑔𝜗𝑐(𝑡)
(𝒙(𝑡))

𝑇

𝑡=1

)  
(2) 

In the HMMs, a set of states and the transition probability 

matrix are treated as missing data. Therefore, we first need to 

define two random variables, 𝑢𝑗(𝑡) and 𝑣𝑗𝑘(𝑡), that correspond 

to the sequence states 𝑑(1), 𝑑(2), ⋯ , 𝑑(𝑇) by the zero-one 

random variables. The random variable 𝑢𝑗(𝑡) is equal to 1 if the 

state of the model at time 𝑡 is 𝑗 and 0 otherwise, 𝑡 = 1, 2, … , Τ. 

Whereas the random variable 𝑣𝑗𝑘(𝑡) is equal to 1 if 𝑑(𝑡 − 1) =

𝑗 and  𝑑(𝑡) = 𝑘, and 0 otherwise, with 𝑡 = 2,3, … , Τ. Using those 

two random variables, namely, 𝑢𝑗(𝑡) and 𝑣𝑗𝑘(𝑡), we get the 

complete log-likelihood formulation of the HMMs from 

Equation (2), as follows: 

log(𝑃(𝑿, 𝐷)) 

= ∑ 𝑢𝑗(1) log 𝛿𝑗

𝑚

𝑗=1

+ ∑ ∑ (∑ 𝑣𝑗𝑘(𝑡)

Τ

𝑡=2

) log 𝛾𝑗𝑘

𝑚

𝑘=1

𝑚

𝑗=1

+ ∑ ∑ 𝑢𝑗(𝑡)

Τ

𝑡=1

log 𝑔𝜗𝑐(𝑡)
(𝒙(𝑡)) .

𝑚

𝑗=1

 

(3) 

Since the states 𝐷(𝑡) in the HMMs are treated as missing data 

(unobservable), one way to perform parameter estimates of Eq. 

3 is to use the Expectation-Maximization (EM) algorithm that 

was rigorously derived in [29]. This proceeds in two steps, 

namely the E step, where ℋ𝒙(𝚿̃, 𝚿) = 𝐸𝚿[log 𝑃(𝑿, 𝐷)|𝑿 = 𝒙] is 

calculated, and the M step, where one is calculated as follows: 

𝚿(𝑙+1) = arg max
𝚿

ℋ𝒙(𝚿, 𝚿(𝒍)), (4) 

with 𝑙 expressing the iteration and starting from an initial value 

𝚿(0). While 𝑙 → ∞, 𝚿(𝑙) converges to the maximum likelihood 

estimator of the density of 𝑿. The detailed steps of the EM 

algorithm are described in Nasri et al. [30] and are omitted to 

save space. In practice, the parameters estimation of Copula-

HMMs is worked out using the R package “HMMcopula” 

developed by Thioub et al. [31]. Meanwhile, for the Poisson 

HMMs case, the parameter estimation is carried out using R 

codes of “Pois-HMM” that are provided by Zucchini et al. [18]. 

It should be highlighted that determining the optimal state 

sequence, which would most adequately describe the 

observation sequence in some way, is another challenge that 

needs to be resolved in the context of HMMs [18]. That is, given 

as input the parameters of HMMs 𝚿 and a sequence {𝑋(𝑡)} of 

length 𝑇, we want to find the most likely sequence of states 
{𝐷(𝑡)} that produces the output sequence {𝑋(𝑡)}. This means 

finding a sequence {𝐷(𝑡)} such that the probability of Eq. 2 is 

maximal. This problem is solved effectively by the Viterbi 

algorithm [32], and the details are as follows.  

To convert the products form in Eq. 2 into summations form, 

we define 𝐴(𝐷(𝑡)) first as 

𝐴(𝐷(𝑡)) = − log (𝜹𝑑(1)𝑔𝜗𝑑(1)
(𝒙(1))) 

− [∑ 𝑙𝑜𝑔 (𝛾𝑑(𝑡−1),𝑑(𝑡) 𝑔𝜗𝑑(𝑡)
(𝒙(𝑡)))

𝑇

𝑡=2

]. 

(5) 

Consequently, the optimal state estimation problem for 

max
𝐷(𝑡)

𝑃(𝑿, 𝐷|𝚿) becomes equivalent to min
𝐷(𝑡)

𝐴(𝐷(𝑡)) [32]. 

Subsequently, let 𝐴𝑡(𝐷(1), 𝐷(2), . . . , 𝐷(𝑡)) be the first 𝑡 terms of 

𝐴(𝐷(𝑡)) and 𝐵𝑡(𝑖), which denotes the minimal accumulated cost 

when we are in state i at time t, namely 

𝐵𝑡(𝑖)  =  min
𝐷(1),...,𝐷(𝑡)=𝑖

𝐴𝑡(𝐷(1), 𝐷(2), . . . , 𝐷(𝑡) = 𝑖). (6) 

Viterbi algorithm then can be implemented in four steps as 

follows: 

1.  Initialize the 𝐵𝑡(𝑖) for  all 1 ≤ 𝑖 ≤ 𝑚: 

𝐵𝑡(𝑖) =  − log (𝜹𝑑(1)𝑔𝜗𝑑(1)
(𝒙(1))) 

2.  Inductively calculate the 𝐵𝑡(𝑖) for  all 1 ≤ 𝑖 ≤ 𝑚, from time 

𝑡 = 2 until 𝑡 = 𝑇: 

𝐵𝑡(𝑖) =  min
1≤𝑗≤𝑚

𝐵𝑡−1(𝑗) −  log (𝛾𝑑(𝑡−1)=𝑗,𝑑(𝑡)=𝑖  𝑔𝜗𝑑(𝑡)
(𝒙(𝑡))) 

3.  Termilize the minimal value of 𝐴(𝐷(𝑡)): 

min
𝐷(𝑡)

𝐴(𝐷(𝑡)) =  min
1≤𝑖≤𝑚

𝐵𝑇(𝑖) 

4.  Finally, we trace back the calculation to find the optimal 

state of 𝐷(𝑡).  
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From the aspect of state-dependent probability, we then notice 

that the Copulas were used because of their flexibility to 

determine the joint probability density function 𝑔𝜗𝑑(𝑡)
 [19,20]. 

Therefore, a more thorough explanation of the Copulas theory 

is required, which will be provided in the following subsection. 

Bivariate Copula Models 

As is well known, the Copula models or Copulas (denoted by 

𝐶) are one of the tools in dependency modeling that are quite 

popular in a wide range of scientific fields, such as engineering 

[33], economics [34], geostatistics [35,36], and finance [37,38]. 

While Copulas are complicated to spell out in multivariate 

variables, it becomes relatively easy to discuss in the bivariate 

case [20]. As previously mentioned in Section 1, this study is 

focused on modeling the dependence of two adjacent segments. 

For these reasons, the discussion related to Copulas is restricted 

to the bivariate Copula, which is defined as a two-dimensional 

cumulative distribution function (CDF) of variables wherein 

dependence between marginals exists.  

Generally, the joint distribution of two random variables 𝑋1 and 

𝑋2 with CDFs of 𝐹𝑋1
(𝑥1) and 𝐹𝑋2

(𝑥2) is denoted by 

𝐹𝑋1,𝑋2
(𝑥1, 𝑥2). Meanwhile, the bivariate Copula is denoted by 

𝐶(𝐹𝑋1
(𝑥1), 𝐹𝑋2

(𝑥2);  𝜃), where the notation of 𝜃 is the Copula 

parameter that describes a measure of dependency. By 

following Sklar’s theorem [39], the relationship of both joint 

distributions can be expressed as follows: 

𝐹X1,X2
(𝑥1, 𝑥2) = 𝐶(𝐹X1

, 𝐹X2
; 𝜃) =  𝐶(𝑢1, 𝑢2; 𝜃). (7) 

The theorem of integral transform probability [40] shows that 

the marginal CDF of variables 𝑋1 and 𝑋2 follows the Uniform 

distribution ranging from 0 to 1, denoted by 𝑢(0,1). Therefore, 

𝐹𝑋1
(𝑥1) and 𝐹𝑋2

(𝑥2) can be rewritten as 𝑢1 and 𝑢2, respectively. 

In many kinds of Copulas literature, a number of bivariate 

Copula functions have been widely used in practice. However, 

the results in this paper rely on the following four commonly 

used, namely Gaussian, Clayton, Gumbel, and Frank Copulas. 

Table 1 shows their summary and mathematical expression. In 

addition, the Copula parameter is estimated using a two-stage 

procedure called Inference Function for Marginals in which the 

marginal distribution is estimated in the first step and then we 

treat them to estimate the parameter Copula 𝜃, in either a full or 

semi-parametric approach [41].  

Table 1: Summary of the mathematical formulation of 

Copula model, and domain parameter for Gaussian, 

Clayton, Gumbel, and Frank copulas. 

Copula 

Models 
𝑪(𝒖𝟏, 𝒖𝟐; 𝜽) 

Domain of 

𝜽 

Gaussian Φ𝐺[Φ−1(𝑢1), Φ−1(𝑢2); 𝜃] (−1,1) 

Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−1/𝜃

 (0, ∞) 

Gumbel  
exp (−((− log 𝑢1)𝜃

+ (− log 𝑢2)𝜃)
1/𝜃

) 
[1, ∞) 

Frank −
1

𝜃
log (1 +

𝑒(−𝜃𝑢1−1) 𝑒(−𝜃𝑢2−1) 

exp(−𝜃) − 1
) 

(−∞, ∞)
\{0} 

Notes: The notation of 𝛷 is the cdf of 𝑁(0,1), meanwhile 𝛷−1 is 

functional inverse of 𝛷. The symbol of  𝛷𝐺[∗,∗; 𝜃] is the bivariate 

normal distribution with correlation 𝜃. 

For the semi-parametric approach, the estimated margins from 

bivariate random variables were typically used to form the 

sample 𝒖1:𝑇,𝑗 = (𝐹1:𝑇,1(𝑋1(𝑡)), 𝐹1:𝑇,2(𝑋2(𝑡))). It is known as 

pseudo-observation, and it is formulated as follows:  

𝐹1:𝑇,𝑗(𝑥) =
1

𝑇
 ∑ 𝟏(𝑋𝑗(𝑡) ≤ 𝑥), 𝑥 ∈ ℝ𝑇

𝑡=1 ,   𝑗 = 1,2  (8) 

where 𝑇 represents the observation length, 𝟏 is the indicator 

function, that is, 𝟏(𝑋𝑗(𝑡) ≤ 𝑥) is one when 𝑋𝑗(𝑡) ≤ 𝑥 and zero 

otherwise. This approach can be avoided in relation to any 

misspecification of the estimated margins [42]. 

Note that the theory of Copulas as outlined above is applied to 

continuous variables. In the case of discrete variables, it is not 

expressed as Eq. 7 due to a lack of uniqueness [23,39]. Also, 

there is another serious problem related to the estimate of the 

Copulas parameter 𝜃. That is, the marginal distribution jumps 

when either 𝐹𝑋1
 or 𝐹𝑋2

 is noncontinuous. It causes the inverses 

𝐹𝑋1

−1 and 𝐹𝑋2

−1 to have plateaus, which may lead to biased 

estimates of 𝜃 [43]. Therefore, these conditions have some 

disadvantages when applying the Copulas for discrete 

variables. One idea to overcome this problem is to analyze the 

continued discrete variables using the Continuous Extension 

technique [24]. With this idea, the estimation parameter 

Copulas of continued variables can be performed based on the 

procedure for continuous variables. This technique was also 

mentioned in Heinen and Rengifo [44], Nikoloulopoulos [45], 

and Inouye et al [46]. 

Continuous Extension Technique 

This subsection introduces the concept of the Continuous 

Extension technique in transforming the discrete random 

variable 𝑋 to a continuous, which is denoted by 𝑋∗ [27]. 

Specifically, the former discrete variable becomes continuous 

by adding a random independent perturbation variable that is 

defined in [0,1]. This technique was used by Denuit and 

Lambert [25] in concordance measures for bivariate discrete 

data with some development. Additionally, the Uniform 

distribution (0,1) was selected as the most natural choice for a 

random independent perturbation, where it satisfies all the 

necessary constraints of the probability functions.  

Here, we focus on the technique proposed by Denuit and 

Lambert [25]. They associate the discrete variable 𝑋 with a 

continued variable 𝑋∗ and a Uniform distribution 𝑈 such that  

𝑋∗ = 𝑋 + (𝑈 − 1). (9) 

Variable 𝑈 represents a Uniform distribution (0,1) and is 

independent of 𝑋. It is clear to see that this new random variable 

𝑋∗ is continuous and 𝑋∗ ≤ 𝑋. Related to this current work, the 

essential result from Denuit and Lambert study is that the 

Continuous Extension technique preserves the dependence 

structure of the bivariate discrete variable [25,28]. 

 

THE SEISMICITY DATA PREPARATION AND THE 

DATA ANALYSIS PROCEDURE  

The Seismicity Data Preparation 

The seismicity data source is taken from the U.S. Geological 

Survey and Indonesia’s Agency for Meteorology, Climatology, 

and Geophysics (BMKG) catalogs, including the foreshock, 

mainshock, and aftershock of earthquakes. However, by 

recalling the issue of the current study, only mainshock 

earthquakes are used in data analysis. Additionally, we need to 

determine a certain magnitude threshold (𝑀𝑤) to work out the 

annual frequency tabulation process of mainshock earthquakes. 

According to these objectives, two stages of the seismicity data 

preparation will be performed, namely the declustering process 

[47] and the estimation value of the magnitude of completeness 

(Mc) [48]. In practice, both processes are performed using the 

Zmap package developed by Weimer [49].  
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Table 2: The standard input parameters for declustering algorithm by Reasenberg.  

Parameter Simulation range 
Standard 

Notation Represent Minimum Maximum 

𝜏𝑚𝑖𝑛 The minimum value (days) of the look-ahead time for building clusters when the first 
event is not clustered. 

0.50 2.50 1.00 

𝜏𝑚𝑎𝑥 The maximum value (days) of the look-ahead time for building clusters. 3.00 15.00 10.00 

𝑝1 The probability detecting the next clustered event used to compute the look-ahead 
time. 

0.90 0.99 0.95 

𝑥𝑘 The increse of the lower cut-off magnitude during clusters: 𝑥𝑚𝑒𝑓𝑓  =  𝑥𝑚𝑒𝑓𝑓 + 𝑥𝑘𝑀, 

where M is the magnitude of the largest event in the cluster. 

0.00 1.00 0.50 

𝑥𝑚𝑒𝑓𝑓 The effective lower magnitude cutoff for catalog. 1.50 1.80 1.60 

𝑟𝑓𝑎𝑐𝑡 The number of crack radii surrounding each earthquake within new events 
considered to be part of the cluster. 

5.00 20.00 10.00 

  

Figure 2: The visualizing of the annual frequencies of mainshock earthquakes with 𝑴𝒘 ≥ 4.6. Columns correspond to the five 

segments studied. Meanwhile, Rows correspond to bar plots (first row) and probability density function (second row). 

Table 3: Descriptive statistics of the data. 

Segments 
Descriptive statistics 

Min Max Mean Var Skew Kurt 

AA 0 81 8.73 165.12  4.32 23.33 

NS 0 61 11.94 221.41 1.69 5.09 

MS 0 31 4.58 27.56 3.04 14.93 

MP 0 59 8.48 150.31 2.48 8.88 

EO 0 25 8.58 32.04 1.24 4.59 

Notes: Minimum (Min), Maximum (Max), Variance (Var), Skewness 

(Skew), and Kurtosis (Kurt). 

For the first step, the Reasenberg algorithm that connects 

earthquakes according to the spatial and temporal distances 

among them [50], is applied. Technically, this algorithm 

eliminates earthquakes that occur within a specific distance and 

time, including foreshocks and aftershocks. There are six input 

parameters required for this, where the value of the six 

parameters in this study is determined by the standard value of 

each parameter (the last column of Table 2). Furthermore, for 

the second step, there are two common methods to estimate the 

Mc: the catalog-based [51] and network-based [52] methods.  

Here, we concentrate on the former, that is, fitting the 

Gutenberg-Richter model to the observed frequency magnitude 

distribution, using this relation  

log10𝑁 = 𝑎 − 𝑏(𝑚 − 𝑀𝑐). (10) 

The used variables in Eq. 10 are as follows. Variable 𝑁 is the 

number of earthquakes with a magnitude greater than or equal 

to 𝑚, 𝑎 is the earthquake productivity, and 𝑏 describes the 

relative distribution of small and large earthquake events.  

The results of the seismic data preparation process using 

historical earthquake data from January 1971 to December 

2018 are as follows: The estimated value of Mc is 4.6, and there 

were 419, 573, 220, 407, and 412 mainshock earthquakes for 

the AA, NS, MS, MP, and EO segments, respectively. The 

detailed data sets of the annual frequencies for the five segments 

are displayed graphically in Figure 2, while the descriptive 

statistics are provided in Table 3.  

According to the first row of Figure 2, there are some periods 

within each segment with relatively low, moderate, and high 

rates. In addition, the condition of overdispersion relative to the 

Poisson distribution in the observed data exists for all segments, 

i.e., the variance is greater than the mean (see columns 4 and 5 

of Table 3). From these conditions, it suggests that the annual 

earthquake frequencies of each segment may consist of 

unobserved groups that have a distinct distribution and are 

serial time-dependent [18] (result 1). Furthermore, since the 

skewness and kurtosis are positive and greater than 3 for all 

segments, the probability density empiric of each segment tends 

to be right-skewed and has fatter tails (result 2). These two 

results indicate the inappropriateness of the Poisson distribution 

with a single peak as a model. This is confirmed by the second 

row of Figure 2, which shows earthquake frequency data (bar 

chart) uncovered by the Poisson distribution's probability 

density function (pdf) with a single peak (dark blue color) due 

to unobserved heterogeneity in the data. For those reasons, we 

apply the HMMs to complete two cases of our research 

problem, which are dealing with unobserved heterogeneity and 

serial time-dependent issues in the data observations [18].
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Figure 3: Flowchart of the data analysis procedure.

 

RESULTS AND DISCUSSION 

In this section, we present the results and discussion of the 

seismic activity analysis of five major earthquake source 

segments in the Sumatra megathrust zone. In practice, we 

present it in two cases, namely each of the five segments 

independently (Case 1) and two adjacent segments (Case 2). 

For this purpose, two particular types of HMMs, namely 

Poisson-HMMs, which are used to complete Case 1, and 

Copula-HMMs, which are used to complete Case 2, are applied. 

However, to help the readers understand the steps of our work, 

we previously provided a flowchart diagram of the data analysis 

procedure, as shown in Figure 3. 

The Seismic Activity Analysis of Case 1 

Since the data modeled using the HMMs for Case 1 issue is 

assumed to have time-dependent properties, we first perform a 

serial time dependence test using the Ljung-Box test [53], 

where the detailed steps are seen in the Appendix of this article.  
 

The null hypothesis (H0) to be tested is that the annual 

frequency data is serially time-independent. It can be 

formulated formally as H0: 𝜌̂2(ℎ) = 0. The H0 is rejected with 

a significance level of 𝛼, if the P-value of 𝑄𝐿𝐵(ℎ) < 𝛼. In this 

work, we choose 𝛼 = 0.05. The notation of 𝜌̂2(ℎ) is the sample 

autocorrelation at lag ℎ, whereas 𝑄𝐿𝐵(ℎ) is the statistical test of 

the Ljung-Box test. The detailed formulas of those two 

notations are shown in Eq. A1 of the Appendix.  

The results of the serial time dependence test for five segments 

are seen in Table 4, which shows that H0 is rejected for each 

segment. Thus, the serial time dependence property of the  data 

from each segment of five was present. This preliminary result 

is evidence that the Poisson-HMMs are capable models to be 

used in performing the issue of Case1 due to their ability to deal 

with time-series discrete data that is serially time-dependent. As 

a follow-up, the next step is to select the appropriate model of 

the Poisson-HMMs (i.e., determine the number of states 𝑚) and 

present its estimated parameters. We also processed the data 

with time-independent Poisson distributions such as Poisson 

Start 

Getting the initial seismicity 

data from 

https://earthquake.usgs.gov 

Data preparation for modelling. That is, 

provided the complete, homogeneous, 

and consistent seismicity data from the 

complete earthquake catalog.  

Two treatments as follows:  

 Working out the declustering process 

 Estimating the Mc value 

Collecting data; observed yearly 

number of earthquakes with 

magnitude ≥  Mc   

The Seismic Activity 
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Time dependence 

modelling uses Poisson 

HMMs with a varying 

number of states. 

Comparing the BIC values 

for the tested models. 

The selected model and 

its parameters with the 

smallest BIC. 

The Seismic Activity 

Analysis of Case 2 

Data preparation. 

 Transform the bivariate 

discrete data 
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Hidden Markov Models a 
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and Copula models 

(Gaussian, Clayton, 

Frank, and Gumbel). 
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Results and 

discussion 
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The selected model and its 
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Some statistical test: 

Kendall’s 𝜏, stationarity, and 

serial independence. 
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distribution (Pois.Dist), and Independent Poisson Mixture 

Models (Poisson-MMs) [18]. 

Table 4: Serial time dependence test of the annual 

mainshock earthquakes frequency using Ljung-Box Test. 

Segments 

Ljung-Box Test 

𝝆̂𝟐(𝟏) 𝑸𝑳𝑩(𝟏) P-value 
Decision  

of 𝐇𝟎 

AA 0.441 9.994 1.61x10-03 Rejected  

NS 0.889 40.389 2.08x10-10 Rejected 

MS 0.308 4.867 2.74x10-02 Rejected 

MP 0.692 24.426 7.72x10-07 Rejected 

EO 0.635 20.593 5.68x10-06 Rejected 

Information-theoretical methods, such as Akaike Information 

Criteria (AIC) and Bayesian Information Criteria (BIC), can be 

used to select the appropriate model for any given data set when 

the model parameters are estimated using the maximum 

likelihood method. [18,54]. The following is their formula: 

AIC(𝑚) =  −2. 𝑙𝑙(𝑚) + 2𝑙(𝑚), and BIC(𝑚) =  −2. 𝑙𝑙(𝑚) +

𝑙(𝑚). ln(𝑇), where 𝑙𝑙(𝑚) is the value of log-likelihood, 𝑙(𝑚) is 

the number of parameters, and 𝑇 is the size of observations.  

Table 5 shows the AIC and BIC values for the three applied 

models, namely Poisson Distribution, Poisson-MMs, and 

Poisson-HMMs. Generally, for each segment analyzed, the 

smallest AIC(m) and BIC(m) belong to the Poisson-HMMs 

with the corresponding number of states (bold mark). 

Meanwhile, the Poisson distribution and Independent Poisson 

Mixture Models (Poisson-MMs) are not appropriate for the data 

modeled. What is noticeable from this result is that the selected 

model (Poisson-HMMs) for each of the five segments is 

consistent with the serial time dependence test; that is, the data 

modeled has serially time-dependent properties (see Table 4).  

Subsequently, as can be seen in the 9th and 10th rows of Table 

5, it is clear that for the MS and MP segments, the two model 

selection criteria (i.e., AIC and BIC) give the same results 

namely, 3-state Poisson-HMM. Meanwhile, for the AA, NS, 

and EO segments, it is seen that there is a different result 

between these two information criteria. As a response to this 

condition, we decided to use the BIC criteria in determining the 

final selected model. The background for choosing BIC to 

select the final model due to this criterion is a particular kind of 

model selection among a class of parametric models with 

various parameter numbers and is more conservative [18,54].

Table 5: Comparison of the fitted models by AIC and BIC.  

The 

Models 
m  

Segments 

AA NS MS MP EO 

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

Pois.Dist -  638.077 639.949 878.304 880.175 344.923 346.794 714.985 716.857 352.275 354.147 

Poisson-MMs 

2 340.713 346.326 367.426 373.040 271.038 276.652 335.125 340.739 323.921 329.535 

3 306.248 315.604 332.445 341.801 257.354 266.710 294.560 303.915 289.416 298.772 

4 306.278 319.376 336.445 349.543 258.525 271.623 297.294 310.392 293.080 306.179 

Poisson-HMMs 

2 338.533 346.018 331.040 338.524 261.088 268.573 319.273 326.758 312.713 320.198 

3 280.022 296.862 287.573 304.413 247.589 264.430 275.989 292.830 268.530 285.371 

4 277.508 307.447 285.271 315.211 251.425 281.364 279.418 309.357 268.083 298.022 

 

    

    

    

     

Figure 4: Diagnostic plots based on ordinary pseudo-residuals of the EO segment case. Rows correspond to (1) index plots of the 

normal pseudo-residuals with horizontal lines at ± 1.96 (2.5% and 97.5%) ± 2.58 (0.5% and 99.5%), (2) histograms of the normal 

pseudo-residuals with theoretical Normal distribution curves in red, (3) quantile-quantile plots (QQ-plots) of the normal pseudo-

residuals with the theoretical quantiles on the horizontal axis, and (4) autocorrelation functions of the normal pseudo-residuals. 

Columns correspond to the Poisson-HMMs fitted to the EO segment data with 1,2,3, and 4 states respectively. 
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Furthermore, to check whether the best model provides an 

adequate fit to the data modeled, we analyze the normal pseudo-

residuals of the selected model, including index plots, 

histograms, QQ-plots, and autocorrelation functions. That is, by 

comparing the normal pseudo-residuals of the 3-state Poisson-

HMM as the selected model to those of the models with one, 

two, and four states. To do so, we apply the relevant R codes of 

the pseudo-residuals analysis for univariate data that was 

provided by Zucchini et al. [18]. To save space, we will focus 

the discussion only on the EO segment. Meanwhile, for other 

segments, it can be worked out with the same technique. 

Let us consider the first and second columns of the ordinary 

pseudo-residuals of the EO segment displayed in Figure 4. 

Three objects can be discussed from these figures. The first is 

the presence of index plots elements of the normal pseudo-

residuals that lie outside the 0.5% and 99.5% bands; the second 

is that the normal pseudo-residuals deviate significantly from 

the standard normal distribution; and the third is the presence 

of significant residual correlation on the normal pseudo-

residuals for some lag. From these three conditions, it is clear 

that the single Poisson distribution and 2-state Poisson-HMM 

are not appropriate models for our data.  

Additionally, for three and four-state Poisson-HMMs, three 

points can be stated from these models, such as: no observations 

stand out as extreme in the normal pseudo-residuals index plots; 

histograms and QQ-plots of the normal pseudo-residuals are 

approximately normal-shaped; and autocorrelations are near-

zero, indicating low correlation in the residuals. By considering 

the model selection criteria and the diagnostic plots based on 

ordinary pseudo-residuals, it can be concluded that the 3-state 

Poisson-HMM is not only the selected model with the smallest 

BIC but also provides an adequate fit to the data. 

We now present the estimated model parameters for each of the 

five segments fitted by the EM algorithm, which are 

summarized in Table 6. Table 6 shows the parameter estimates 

of the 3-state Poisson HMM, and its rows correspond to a 

different state for each. Specifically, the 3rd to 7th columns 

represent the parameters of the HMMs, namely the stationary 

distribution (𝜹𝑃), seismic rates (𝝀𝑃) with their confidence 

intervals, and transition probability matrix (TPM) (𝚪𝑃). Also, 

the mean-variance of the observations and model are provided 

in the last four columns. 

A bootstrap sample of size 200 was generated based on the 3-

state Poisson HMM for the earthquake frequency data. The 

resulting sample of parameters then produced the 90% 

confidence intervals for the seismic rates parameter that are 

displayed in the 5th and 6th columns of Table 6. From the seismic 

rates parameter 𝝀𝑃 (i.e., the 4th through 6th columns), it emerges 

that for each segment, the intervals for the state-dependent 

mean (𝝀𝑃)𝑖 do not overlap. Thus, it suggests that the states for 

each segment are well defined. In this work, the three states 

represent the seismicity rates of mainshock earthquake 

frequencies, namely “rare”, “moderate”, and “frequent” which 

correspond to the level of the tectonic movement, that is, “low”, 

“medium”, and “high” dynamics, respectively [2,3].

Table 6: The estimated parameters and means-variances of the selected models for the five segments.  

Segments State 

Parameters Observation Model 

𝜹𝑷 
𝝀𝑷 

𝚪𝑷 Mean Variance Mean Variance 
EM 90% Conf. Limits 

AA 

1 0.620 4.383 3.638 5.164 

[
 0.982 0 0.018 
 0.032 0.968 0 

 0 0.506 0.494 
] 8.729 165.095 8.415 91.409 2 0.358 11.918 9.182 14.227 

3 0.022 63.500 54.104 71.661 

NS 

1 0.606 3.567 2.959 4.485 

[
 0.981 0.019 0 
 0.038 0.875 0.087 

 0 0.270 0.730 
] 11.938 221.336 13.867 231.098 2 0.298 23.085 21.215 24.850 

3 0.096 50.339 43.965 55.648 

MS 

1 0.776 2.534 2.084 2.998 

[
 0.957 0.043 0 
 0.175 0.655 0.170 

 0 1 0 
] 4.583 27.525 4.261 22.125 2 0.192 7.842 6.459 9.063 

3 0.032 24.317 19.913 29.200 

MP 

1 0.579 2.621 1.542 4.022 

[
 0.980 0.020 0 
 0.040 0.881 0.079 

 0 0.185 0.815 
] 8.479 150.255 8.810 129.760 2 0.295 9.015 7.422 10.551 

3 0.126 36.839 33.703 39.396 

EO 

1 0.214 0.498 0.000 1.269 

[
 0.933 0.067 0 

 0 0.936 0.064 
 0.063 0.094 0.843 

] 8.583 32.035 8.060 39.939 2 0.558 7.199 5.947 8.470 

3 0.228 17.235 15.322 20.098 

 

 

     

     

Figure 5: Rows correspond to (1) estimated states of seismic activity and (2) the observation compared with the state-dependent 

means of 3-state Poisson HMM. Columns correspond to the five segments, namely AA, NS, MS, MP, and EO respectively. 
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The visualization of the level of tectonic plate dynamic and the 

comparison between the observations as well as the mean of the 

selected models are displayed in Figure 5. 

From Table 6 and Figure 5, some aspects can be discussed. For 

instance, let us consider the AA segment. We obtain the 

stationary distribution 𝜹𝑃 = (0.620   0.358   0.022) with the 

seismic rates 𝝀𝑃 = (4.383   11.918   63.500). This means that 

the probability of mainshock earthquake frequency for a given 

year in the future (which is far enough from 2018) to be in a 

rare state (4.383) is about 62%, in a moderate state (11.918) is 

34%, and in a frequent state (63.50) equals only 2%. 

Additionally, from the first row of TPM, we see that when the 

seismicity is in a low state, it then still remains in that state with 

a probability of 0.982, or it jumps to a medium state with a 

probability of 0, or it jumps to a high state with a probability of 

0.018. This implies that a seismic level jump of two was 

feasible in this segment. The second and third rows of the TPM 

can be explained using the same technique. Moreover, let us 

consider the first column of Figure 5. From a time-dependent 

point of view, the low dynamic of the tectonic plate movements 

was recorded by the beginning of 1971 and, therefore, the 

seismic behavior jumped from low to high dynamics from 2006 

to 2007. Thereafter, it remained in a moderate state from 2008 

until 2018, as shown in the first row. Note that the period of 

1971 to 2006 corresponds to the seismic quiescence: a lower 

rate period of mainshock earthquakes, as shown in the second 

row of Figure 5. The same analysis can be conducted for other 

segments and is omitted to save space. The property of seismic 

activity can jump two levels can also occur in the EO segment, 

shown by the representative result of the value 𝛾31 > 0. 

The Seismic Activity Analysis of Case 2 

We now present the seismic activity analysis from a pair of two 

adjacent segments in the Sumatra megathrust zone (Case 2) 

wherein the possibility of spatial and/or time dependence may 

exist. For this purpose, we perform an analysis of four groups 

of adjacent segment pairs, namely, Aceh-Andaman with Nias-

Simeuleu (AA-NS), Nias-Simeuleu with Mentawai-Siberut 

(NS-MS), Mentawai-Siberut with Mentawai-Pagai (MS-MP), 

and Mentawai-Pagai with Enggano (MP-EO). The pseudo-

observation of data sets is calculated using Eq. 8 and is 

displayed graphically in the second row of Figure 6. 

The Continuous Extension process using Eq. 9 is applied to 

obtain the continued discrete variables marked with an asterisk 

(*). For example, the continued variable for the AA segment is 

denoted as AA*, as well as for the others. The last row of Figure 

6 shows the pseudo-observation scatter plots of the continued 

variable. Meanwhile, the graphical description of the 

Continuous Extension process, such as the Uniform distribution 

(0,1) uses, and the comparison of probability density 

(cumulative) functions between the discrete and its continued 

variables, is displayed in Figure 7. From now on, we focus on 

continued data, which will be used in estimating the parameters 

of the Copula-HMMs. Note that, before performing the 

estimation, three formal statistical tests, such as tests of spatial, 

stationarity, and serial time dependence, are first discussed.  

The first statistical test procedure is adapted from Kruskal [55] 

in which the statistic tested is the significance of Kendall’s 𝜏. 

For the second test, the statistical test procedure is adapted from 

Bücher et al. [56] based on change-point detection in the 

Copulas, considering the following variants of the empirical 

process introduced by Csörgö and Horváth [57] and Gombay 

and Horváth [58]. For the third test, the statistical test procedure 

is worked out from two points of view, namely the bivariate and 

univariate series. For bivariate series, it is adapted from Genest 

and Remilland [59] based on the serial empirical Copula. 

Meanwhile, for univariate series, it is adapted from Ljung and 

Box [53] based on the sample autocorrelation function. The 

detailed formula and steps of three statistical tests are provided 

in the Appendix of this article.  

In practice, the tests of three statistical are conducted using the 

copula R package provided by Hofert et al. [26]. These include 

cor(method=kendall), cpCopula(method=nonseg), and serial 

IndepTest(lag.max=finite number).  

Results for the spatial dependence and stationarity tests are 

presented in Table 7, while the serial time dependence test is in 

Table 8. Note that, the P-values correspond to each statistical 

test, namely 𝑍𝜏 (spatial dependence), 𝑆𝑇
𝐶  (stationarity), and 

𝑆𝑇
Π𝑠

(bivariate serial time dependence) (see the Appendix for 

details).  
 

 

 Figure 6: Rows correspond to (1) the bivariate frequency data, (2) the pseudo-observations of the bivariate discrete variable, and 

(3) the pseudo-observations of the bivariate continued variable. Columns correspond to the pairs of two adjacent segments.  
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Figure 7: The first row corresponds to the Uniform distribution used on the discrete data of each segment. The second row 

illustrates the comparison of PDF between the discrete and its continued variable. The third row shows the comparison of CDF 

between the discrete and its continued variable. Meanwhile, columns correspond to the five segments studied. 

Table 7: The test results of the dependence test using 𝒁𝝉 and stationarity test using 𝑺𝑻
𝑪. 

Groups 
Spatial Dependence Test  Stationarity Test  

Kendall’s 𝝉 𝒁𝝉 P-value Decision of 𝐇𝟎  𝑺𝑻
𝑪 P-value Decision of 𝐇𝟎  

AA-NS 0.683 6.473 9.6x10-11 Rejected  0.601 0.704 Accepted 

NS-MS 0.524 4.909 9.1x10-07 Rejected  0.391 0.778 Accepted 

MS-MP 0.285 2.648 8.1x10-03 Rejected  0.922 0.687 Accepted 

MP-EO 0.323 3.039 2.3x10-03 Rejected  0.411 0.709 Accepted 

For the first test, the hypothesis is as follows: H0 ∶  𝜏 = 0 

(independent) vs H1 ∶  𝜏 ≠ 0 (dependent). As seen in Table 6 

(part of the spatial dependence test), the small P-value provides 

evidence against independence for a pair of two data sets. 

Therefore, the spatial dependency of each pair analyzed exists. 

For the second test, the null hypothesis, defined as a pair of two 

random variables, is stationary. It means that there exists a 

Copula 𝐶 for the bivariate random variables. As shown in Table 

7, part of the stationarity test and the large P-value (> 0.05) 

provide no evidence against the stationarity. 

The small P-value for the third test, as displayed in Table 8, 

provides evidence against the null hypothesis, according to 

which the bivariate variable is serially time-independent. There 

is substantial evidence against serial time independence in the 

univariate component series, according to these results, which 

are consistent with those obtained from the perspective of the 

univariate test (Table 4). 
 

Table 8: The test results of the bivariate serial time 

dependence test using Cramer-von Mises 𝑺𝑻
𝜫𝒔

. 

Segments 
Cramer-von Mises Test 𝑺𝑻

𝜫𝒔
 

𝑺𝑻
𝚷𝒔

 P-value Decision of 𝐇𝟎 

AA 0.225 4.9x10-04 Rejected  

NS 0.294 4.9x10-04 Rejected 

MS 0.089 1.4x10-03 Rejected 

MP 0.147 1.4x10-03 Rejected 

EO 0.084 4.9x10-04 Rejected 

In summary, all the data sets of two adjacent segments show 

spatial and serial time dependence as well as stationarity 

features. These findings suggest that the spatial-time 

dependence modeling for the dataset can be constructed using 

Copula-HMMs approach.  

To select the appropriate Copula-HMMs, the goodness of fit 

test is performed based on P-values criteria developed by Nasri 

et al. [30] that correspond with the Cramer-von Mises statistics 

𝒮𝑇 defined by Genest et al. [60], which is written as follows: 

𝒮𝑇 = 𝑇 ∫ (𝐷𝑇(𝒖) − Π(𝒖))
2

𝑑𝒖
[0,1]2

. (11) 

The used variables in Eq. 11 are as follows.  

Firstly, the empirical distribution 𝐷𝑇(𝒖) is formulated by 

𝐷𝑇(𝒖) =
1

𝑇
∑ ∏ 𝟏(𝑉𝑇,𝑗(𝑡) ≤ 𝑢𝑗)2

𝑗=1
𝑇
𝑡=1 , where 𝑉𝑇,𝑗(𝑡) is the 

pseudo-observations. Secondly, the independence Copula 

Π(𝒖) =  ∏ 𝑢𝑗 ,   2
𝑗=1 𝒖 ∈ [0,1]2, where 𝑢𝑗  is the normalized ranks 

of the pseudo-observations. Furthermore, Thioub et al. [30] 

have built the package for this approach, namely the 

HMMcopula R-package. In this study, we applied that package 

with the number of bootstrap samples and the stopping criteria 

equal to 1000 and 0.0001, respectively.  

The corresponding P-values are summarized in Table 9, 

together with the Cramer-von Mises statistics 𝒮𝑇, and there are 

three comments from this table. Firstly, by looking at the 

biggest P-values (bold marks), the 2-state Gumbel-HMM is an 

appropriate model for the AA-NS group. Secondly, for the three 

groups remaining, Gaussian, Gumbel, and Frank Copula are the 
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selected models for NS-MS, MS-MP, and MP-EO groups, 

respectively. Thirdly, the two and three states of the Gaussian-

HMMs (Gumbel-HMMs) have a significant P-value. However, 

based on the following review below, the estimated model 

parameters are independent of a number of states.   

Let us consider the MS-MP group in Table 9. The statistical 

values of the three models of Gumbel-HMM with various states 

using the Cramer-von Mises 𝒮𝑇 hardly differ from those of the 

P-values. Besides that, as can be seen in Table 10, in terms of 

Copula model parameter 𝜃, namely Gumbel Copula (1.41507), 

2-state Gumbel-HMM (1.41488; 1.41526), and 3-state 

Gumbel-HMM (1.415075; 1.415020; 1.415114), the parameter 

𝜃 each state is likely to be worth ≈1.4150. Furthermore, the 

90% confidence interval parameter of 𝜃 of the two models (i.e., 

2-state Gumbel-HMM and 3-state Gumbel-HMM) tends to 

overlap, as can be seen in the 7th and 11th columns of Table 10. 

This condition suggests that the states of the two models are not 

well defined. Consequently, the 48 data pairs tend to be 

clustered only in one state. That is, for the 2-state Gumbel-

HMM, all of the 48 data pairs are in the second state, meanwhile 

for the 3-state Gumbel-HMM, all of them are in the third state, 

as can be seen in “the number of components” row. According 

to the parsimony principle of mathematical modeling [19, 20], 

it is concluded that the Gumbel Copula is the final model for 

the MS-MP group.   

Furthermore, the same explanation can be applied to the NS-

MS group which is that for the final decision, the Gaussian 

Copula is still the best model.  

The next results are related to the estimated parameters along 

with the 90% confidence intervals. Table 11 shows the 

estimated parameters of all groups based on the selected model. 

From the 7th through 11th rows (the parameter of 𝜃 and 

Kendall’s 𝜏), it suggests that the states of the AA-NS group are 

well defined. Additionally, from a spatial-time dependence 

modeling point of view, the seismic activity of 48 pairs of data 

earthquake frequency histories can be classified into two states 

based on the similarity of the appropriate Copula model. That 

is, states 1 and 2 correspond to the Gumbel Copula with 

parameters 𝜃1 = 2.037 and 𝜃2 = 3.629. Also, the numbers of 

components along with the Kendall’s 𝜏 of states 1 and 2, which 

are 15 pairs of data (Kendall’s 𝜏 = 0.509) and 33 pairs of data 

(Kendall’s 𝜏 = 0.724) are obtained, respectively. These 

information are graphically represented in Figure 8 (bottom).

Table 9: Comparison of the fitted models on the basis of P-value. Also, the Cramer-von Mises 𝓢𝑻 values are provided.   

Copula-
HMMs 

m 

Two Adjacent Segments Studied 

AA-NS  NS-MS  MS-MP  MP-EO 

𝓢𝑻 P-value  𝓢𝑻 P-value  𝓢𝑻 P-value  𝓢𝑻 P-value 

Gaussian 

1 0.068 0.053  0.032 0.612  0.031 0.540  0.014 0.998 

2 0.084 0.059  0.032 0.591  0.031 0.536  0.014 0.998 

3 0.083 < 0.05  0.032 0.592  0.031 0.562  0.014 0.998 

Clayton 

1 0.095 < 0.05  0.052 0.092  0.043 < 0.05  0.023 0.884 

2 0.124 0.075  0.048 0.314  0.068 0.558  0.023 0.875 

3 0.125 0.054  0.044 0.319  0.072 0.452  0.023 0.868 

Gumbel 

1 0.061 0.066  0.038 0.425  0.029 0.588  0.018 0.973 

2 0.069 0.093  0.038 0.384  0.029 0.565  0.018 0.976 

3 0.070 0.089  0.038 0.405  0.029 0.586  0.018 0.953 

Frank 

1 0.061 0.074  0.039 0.290  0.036 0.298  0.014 1 

2 0.060 0.061  n/a n/a  n/a n/a  n/a n/a 

3 n/a n/a  n/a n/a  n/a n/a  n/a n/a 

Note: The notation of n/a denotes the value not available. 
 

Table 10: Information regarding Copula-HMMs parameters for the NSMP and MS-MP group cases.   

Parameters Model 

NS-MS   MS-MP 

2-state  

Gaussian-HMM 

3-state  

Gaussian-HMM 
 

2-state  

Gumbel-HMM 

3-state  

Gumbel-HMM 

Value of cvm 0.032 0.032  0.02944 0.02944 

State 1 2 1 2 3  1 2 1 2 3 

Parameter  

of 𝜽 

EM 0.7260 0.7280 0.7275 0.7273 0.7277  1.4149 1.4153 1.4151 1.4150 1.4151 

90% Conf. 
Limits 

0.6553 0.6551 0.6763 0.6764 0.6763  1.2457 1.2454 1.2495 1.2491 1.2496 

0.8087 0.8084 0.8156 0.8156 0.8156  1.6666 1.6666 1.6375 1.6381 1.6381 

Parameter of 𝜹𝑪  0.4980 0.5020 0.3300 0.3060 0.3640  0.4880 0.5120 0.3300 0.3300 0.3400 

Number of components 0 48 0 0 48  0 48 0 0 48 

Estimated of Kendall’s 𝝉 0.518 0.519 0.5187 0.5185 0.5188  0.2932 0.2934 0.2933 0.2932 0.2933 

Parameter of 𝚪𝑪  [
 0.498 0.502 
 0.498 0.502 

] [
0.330 0.305 0.365
0.330 0.305 0.365
0.331 0.306 0.363

]  [
 0.487 0.513 
 0.490 0.510 

] [
0.330 0.330 0.340
0.330 0.330 0.340
0.330 0.330 0.340

] 
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Table 11: The estimated parameter of the selected models for the four cases under study. 

Selected and  

Parameters Model 

Two Adjacent Segments Studied 

AA-NS 
 NS-MP  MS-MP  MP-EO 

State 1 State 2 

Selected model 
2-state  

Gumbel-HMM 
 Gaussian Copula   Gumbel Copula  Frank Copula 

Value of cvm  0.069  0.032  0.029  0.014 

Parameter of 𝜽 

EM 2.037 3.629  0.728  1.415  3.047 

90% Conf. Limits 
1.931 2.024  0.716  1.335  2.510 

3.533 4.189  0.775  1.600  4.199 

Estimated of  

Kendall’s 𝝉 

EM 0.509 0.724  0.519  0.293  0.311 

90% Conf. Limits 
0.499 0.550  0.507  0.255  0.268 

0.681 0.785  0.564  0.378  0.404 

Number of components 15 33  48  48  48 

Parameter of 𝜹𝑪  0.415 0.585  1  1  1 

Parameter of 𝚪𝑪  [
 0.036 0.964 
 0.691 0.309 

]  1  1  1 

 

 

 

Figure 8: The AA-NS segments studied. The estimated states of seismic activity (top) and classification of the earthquakes are 

based on the state and its segment (bottom). 

 

Subsequently, the estimated TPM 𝚪𝑪 for the Gumbel-HMM 

with two states is determined in the last row of Table 10. From 

the first row of 𝚪𝑪, when a data pair of AA-NS is in state 1, they 

remain in that state with a probability of only 0.036 or jump to 

state 2 with a probability of 0.964. Likewise, from the second 

row of 𝚪𝑪, when a data pair of AA-NS is in state 2, they remain 

in that state with a probability of 0.309 or jump to state 1 with 

a probability equal to 0.691. Therefore, from a series point of 

view, the behavior of seismic activity to jump from one state to 

another has a greater probability than remaining in the same 

state, as graphically represented in Figure 8 (top). Meanwhile, 

from the stationary distribution, 𝜹𝐶  = (0.415 0.585), the 

probability of seismic activity for a given year in the future 

(which is far enough from 2018) to be in state 1 is about 42%, 

while in state 2, it is equal to 58%. 

CONCLUSIONS 

In this paper, we have provided a seismic activity analysis in 

five segments of the Sumatra megathrust zone through an 

unobserved process study of tectonic plate movements. In 

practice, the analysis is worked out using two particular types 

of HMMs: Poisson-HMMs, which are used for each of the five 

segments independently analyzed (Case 1), and Copula-

HMMs, which are used for a pair of two adjacent segments 

analyzed (Case 2). The analysis took into account the annual 

frequencies of mainshock earthquakes with Mw ≥ 4.6 that 

occurred from 1971 to 2018.  

The following are some conclusions from Case 1: each of the 

five independently analyzed segments. The seismic activity of 

each segment has serial time dependence, evidenced by the 

appropriate model for all five segments is the 3-state Poisson-

HMM. The three states in this model represent the seismicity 

rates of mainshock earthquake frequency: rare, moderate, and 

frequent, which correspond to the level of the tectonic 

movement: low, medium, and high dynamics, respectively. 

Furthermore, based on the transition probability matrix, the 

seismic activity of AA and EO segments has the possibility to 

jump two levels, from low to high and from high to low, 

respectively. Therefore, these findings may lead geologists to 

further investigate how and why seismic activity in one 

partitioned megathrust zone can have different characteristics. 

The following are some conclusions from Case 2, which is the 

seismic activity study of two adjacent segments (AA-NS, NS-

MS, MS-MP, and MP-EO). The Continuous Extension 
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technique was first introduced to transform discrete variables 

into continuous ones due to the discrete property of seismicity 

data. From the four groups explored, it was found that for the 

AA-NS group, not only the serial time dependence that 

significantly exists in their earthquake histories but also spatial 

dependence, provided by the selected model that fits the data, 

namely the 2-state Gumbel-HMM. As for the remaining three 

groups, Nias-Simeulue with Mentawai-Siberut, Mentawai-

Siberut with Mentawai-Pagai, and Mentawai-Pagai with 

Enggano, the appropriate models are Gaussian, Gumbel, and 

Frank Copulas, respectively. In this instance, the number of 

states represents the association of seismic activity between two 

adjacent segments, which is related to the association level 

between two adjacent tectonic plate dynamics. 

From a practical point of view, the proposed model is rarely 

discussed in earthquake engineering studies. Therefore, these 

results will make a significant contribution to the seismic 

activity analysis in the earthquake engineering literature, 

especially for seismic issues in the Sumatra subduction zone. 
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APPENDIX

We list the detailed formula and steps of three statistical tests 

that are required in bivariate (time series) dependence 

modelling, namely spatial dependence, stationarity, and serial 

time dependence tests, respectively. Subsequently, in the rest of 

this appendix, we suppose that one has a random sample 𝒙 =

(𝑥1(𝑡), 𝑥2(𝑡)) ∈ 𝑅2 which is the independent copies of bivariate 

random vector  𝑿 = (𝑋1(𝑡), 𝑋2(𝑡)), 𝑡 ∈ {1,2, … , 𝑇}.  

Test of Serial Time Dependence  

The following statistical procedures test of univariate serial 

dependence listed below can be followed: 

1. Determine the hypothesis to be tested 

H0: 𝑋𝑗 are serially time-independent   

H1: 𝑋𝑗 are serially time-dependent 𝑗 = 1,2.  

2. Determine an appropriate statistical test 

𝑄𝐿𝐵(ℎ) = 𝑇(𝑇 + 2) ∑
𝜌̂2(𝑡)

𝑇 − 𝑡

ℎ

𝑡=1

. (A1) 

 The used variables in Eq. A1 are 𝑇 is the sample size, ℎ is 

the number of lags, and 𝜌̂2(𝑡) is the sample autocorrelation 

at lag 𝑡, which is calculated by 

𝜌̂2(𝑡) =
𝑇 ∑ (𝑥𝑗(𝑡) − 𝑥𝑗̅)(𝑥𝑗(𝑡 + ℎ) − 𝑥𝑗̅)𝑇−ℎ

𝑡=1

𝑇 − ℎ ∑ (𝑥𝑗(𝑡) − 𝑥𝑗̅)
2𝑇−ℎ

𝑡=1

  

where  𝑥𝑗̅ =
1

𝑇
∑ 𝑥𝑗(𝑡)𝑇

𝑡=1 .     

3. Calculate the approximate P-value for 𝑄𝐿𝐵(ℎ) test which is 

P-value = (Φ(𝜒1−𝛼,ℎ
2 )(𝑄𝐿𝐵(ℎ))). Here Φ(𝜒1−𝛼,ℎ

2 ) denotes the 

CDF of the Chi-squared distribution with ℎ degrees of 

freedom. 

4. Decide whether the H0 is accepted or rejected. The H0 is 

rejected, if P-value for 𝑄𝐿𝐵(ℎ) < 𝛼. 

The following statistical procedures test of bivariate serial time 

dependence listed below can be followed: 

1. Determine the hypothesis to be tested 

H0: 𝑿 are serially time-independent   

H1: 𝑿 are serially time-dependent  

2. Determine an appropriate statistical test 

𝑆𝑇
Π𝑠

= ∫ 𝑇(𝐶1:𝑇
𝑠 (𝒖) − Π(𝒖))

2

[0,1]𝑝
d𝒖. (A2) 

 The used variables in Eq. A2 are as follows: 

𝐶1:𝑇
𝑠 (𝒖) = 

1

𝑇
∑ ∏ 𝟏(𝐺1:𝑇(𝑋𝑖+𝑗−1) ≤ 𝑢𝑗)

2

𝑗=1

𝑇

𝑖=1

, 

𝐺1:𝑇(𝑥) = 
1

𝑇 + 1
∑ 𝟏(𝑋𝑗 ≤ 𝑥)

𝑇+1

𝑗=1

, 𝑥 ∈ 𝑅. 

Π(𝒖) = ∏ 𝑢𝑗 ,   

2

𝑗=1

𝒖 ∈ [0,1]2. 

3. Calculate the approximate P-value for 𝑆𝑇
Π𝑠

. The detailed 

steps have been provided by Kojadinovic and Yan [61] 

using the permutation principle. 

4. Decide whether the H0 is accepted or rejected. The H0 is 

rejected, if P-value for 𝑆𝑇
Π𝑠

 < 𝛼.  

Test of Spatial Dependence  

In the setting under consideration, the procedure of spatial 

dependence test based on Kendall’s 𝜏 listed below can be 

followed:  

1. Determine the hypothesis to be tested 

H0: 𝑿 are spatially independent  or           𝜏(𝑋1, 𝑋2) = 0   

H1: 𝑿 are spatially dependent or           𝜏(𝑋1, 𝑋2) ≠ 0  

2. Determine an appropriate statistical test 

𝑍𝜏(𝑋1,𝑋2)  

=  
𝜏(𝑋1, 𝑋2)

𝑆𝜏(𝑋1,𝑋2)
 

(A3) 

=  
3(𝑛𝑐 − 𝑛𝑑)

√𝑇(𝑇 − 1)(2𝑇 + 5)/2
 

 The used variables in Eq. A3 are as follows: 

𝑆𝜏 = √
2(2𝑇 + 5)

9𝑇(𝑇 − 1)
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𝜏(𝑋1, 𝑋2) 

= ∑ sgn(𝑥1(𝑖) − 𝑥1(𝑗)) sgn(𝑥2(𝑖) − 𝑥2(𝑗)) 𝑖<𝑗   

= 
2

𝑇(𝑇 − 1)
(𝑛𝑐 − 𝑛𝑑). 

 Variables 𝑛𝑐 and 𝑛𝑑 are the number of concordant and 

discordant pairs, respectively. That is, for 𝑖 <  𝑗, if 

sgn(𝑥1(𝑖) − 𝑥1(𝑗)) = sgn(𝑥2(𝑖) − 𝑥2(𝑗))  then (𝑥1(𝑖), 𝑥2(𝑗)) 

and (𝑥1(𝑗), 𝑥2(𝑗)) is a concordance pair otherwise it is a 

discordance pair.  

3. Calculate the approximate P-value for 𝑍𝜏(𝑋1,𝑋2), which is P-

value = 2 (Φ𝑁(0,1)(−|𝑍𝜏(𝑋1,𝑋2)|)). Here Φ𝑁(0,1) denotes the 

cumulative density function of Normal standart 

distribution. 

4. Decide whether the H0 is accepted or rejected. The H0 is 

rejected, if P-value for 𝑍𝜏 < 𝛼. 

Test of Stationarity 

The following statistical procedures test of stationarity listed 

below can be followed:  

1. Determine the hypothesis to be tested 

H0: 𝑿 is a stretch from a stationarity time series  

H1: 𝑿 is a stretch from a non-stationarity time series  

2. Determine an appropriate statistical test 

𝑆𝑇
𝐶  

= sup
𝑡∈[0,1]

∫ (𝔻𝑇
𝐶 (𝑡, 𝒖))

2

[0,1]2
d𝐶1:𝑇(𝒖)

= max
1≤𝑘≤𝑛−1

1

𝑇
∑ (𝔻𝑇

𝐶 (𝑘/𝑇, 𝑼𝒊
1:𝑇))

2
𝑇

𝑖=1

 

(A4) 

 The used variables in Eq. A4 are as follows. Firstly, 

𝔻𝑇
𝐶 (𝑡, 𝒖) =  √𝑇𝜆𝑇(0, 𝑡) 𝜆𝑇(𝑡, 1) (𝐶1:⌊𝑇𝑡⌋(𝒖) −

𝐶(⌊𝑇𝑡⌋+1)1:𝑇(𝒖)) , (𝑡, 𝒖) ∈ [0,1]3, where, for any 0 ≤ 𝑎 ≤

𝑎′ ≤ 1, 𝜆𝑇(𝑎, 𝑎′) = (⌊𝑇𝑎′⌋ − ⌊𝑇𝑎⌋)/𝑇. Here, a notation ⌊. ⌋ 
denotes the floor function. The term of 𝜆𝑇(0, 𝑡) 𝜆𝑇(𝑡, 1) is 

the cumulative sum change-point steps to which the class of 

tests belongs. Secondly, 𝐶1:𝑇(𝒖) =
1

𝑇
∑ 𝟏(𝑼𝒊

1:𝑇 ≤ 𝒖)𝑇
𝑖=1 , 𝒖 ∈

[0,1]2 is the empirical Copula of 𝑿. Thirdly, the sample of 

pseudo-observations 𝑼𝑖
1:𝑇 is defined by 𝑼𝑖

1:𝑇 =

 
𝑇

𝑇+1
(𝐹1:𝑇,1(𝑋1(𝑡)), 𝐹1:𝑇,2(𝑋2(𝑡))) which is 𝐹1:𝑇,𝑗(𝑋𝑗(𝑡)) is the 

empirical CDF of 𝑋𝑗(𝑡).    

3. Calculate the approximate P-value for 𝑆𝑇
𝐶 . The steps have 

been provided by Bücher et al. [57] using a resampling 

procedure. 

4. Decide whether the H0 is accepted or rejected. The H0 is 

rejected, if P-value of 𝑆𝑇
𝐶  < 𝛼.

 


