Performance of an advanced sand constitutive model in modelling soil and soil-structure interaction under seismic excitation

Authors

  • Piotr Kowalczyk University of Southampton

DOI:

https://doi.org/10.5459/bnzsee.1667

Abstract

There is a growing number of available advanced soil constitutive models aimed at capturing soil cyclic behaviour and their subsequent use in seismic applications. Nevertheless, detailed validation studies of these soil constitutive models on benchmark experimental works including seismic soil-structure interaction are still rare. This work presents a short validation study of the seismic performance of an advanced elastoplastic sand constitutive model on a boundary value problem including kinematic and inertial soil-structure interaction. The results of the finite element numerical model for the free field and structural responses are compared with the experimental work on a group of piles analysed in a flexible soil container filled with dry sand and subjected to simplified seismic loading. In general, the comparisons show a satisfactory match between the results of the simulations and the experiments, with the exception of the numerical predictions of settlements. The computed results are discussed based on: i) the dominant stress-paths in soil; ii) parametric studies on the settlement evaluation; iii) the origin of the high frequency motion oscillations to simple sinusoidal input motions; all with respect to potential improvements in the formulation of the elastic behaviour of the constitutive model in the future. 

References

Pitilakis D, Dietz M, Muir Wood D, Clouteau D and Modaressi A (2008). “Numerical simulation of dynamic soil-structure interaction in shaking table testing”. Soil Dynamics and Earthquake Engineering, 28: 453-467. https://doi.org/10.1016/j.soildyn.2007.07.011 DOI: https://doi.org/10.1016/j.soildyn.2007.07.011

Loli M, Apostolou M, Gazetas G, Gerolymos N and Anastasopoulos I (2010). “Soil failure can be used for seismic protection of structures”. Bulletin of Earthquake Engineering, 8: 309-326.

https://doi.org/10.1007/s10518-009-9145-2 DOI: https://doi.org/10.1007/s10518-009-9145-2

Zhou Z, O'Loughlin CD, White DJ and Stanier SA (2020). “Improvements in plate anchor capacity due to cyclic and maintained loads combined with consolidation”. Géotechnique, 70(8): 732-749.

https://doi.org/10.1680/jgeot.19.TI.028 DOI: https://doi.org/10.1680/jgeot.19.TI.028

Cerfontaine B, White D, Kwa K, Gourvenec S, Knappett J, Brown M and Zhou Z (2023). “Anchor geotechnics for floating offshore wind: Current technologies and future innovations”. Ocean Engineering, 279: 114327. https://doi.org/10.1016/j.oceaneng.2023.114327 DOI: https://doi.org/10.1016/j.oceaneng.2023.114327

Mylonakis G, Nikolaou A and Gazetas G (1997). “Soil-pile-bridge seismic interaction: kinematic and inertial effects. Part I: soft soil”. Earthquake Engineering and Structural Dynamics, 26: 337-359.

https://doi.org/10.1002/(SICI)1096-9845(199703)26:3<337::AID-EQE646>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1096-9845(199703)26:3<337::AID-EQE646>3.0.CO;2-D

Durante MG, Di Sarno L, Mylonakis G, Taylor CA and Simonelli AL (2016). “Soil-pile-structure interaction: experimental outcomes from shaking table tests”. Earthquake Engineering and Structural Dynamics, 45(7): 1041-1061. https://doi.org/10.1002/eqe.2694 DOI: https://doi.org/10.1002/eqe.2694

Muir Wood D, Crewe A and Taylor C (2002). “Shaking table testing of geotechnical models”. International Journal of Physical Modelling in Geotechnics, 1: 01-13. https://doi.org/10.1680/ijpmg.2002.020101 DOI: https://doi.org/10.1680/ijpmg.2002.020101

Massimino MR and Maugeri M (2013). “Physical modelling of shaking table tests on dynamic soil-foundation interaction and numerical and analytical simulation”. Soil Dynamics and Earthquake Engineering, 49: 1-18.

https://doi.org/10.1016/j.soildyn.2013.01.023 DOI: https://doi.org/10.1016/j.soildyn.2013.01.023

Chidichimo A, Cairo R, Dente G, Taylor CA and Mylonakis G (2014). “1-g experimental investigation of bi-layer soil response and kinematic pile bending”. Soil Dynamics and Earthquake Engineering, 67: 219-232.

https://doi.org/10.1016/j.soildyn.2014.07.008 DOI: https://doi.org/10.1016/j.soildyn.2014.07.008

Simonelli AL, Di Sarno L, Durante MG, Sica S, Bhattacharya S, Dietz M, Dihoru L, Taylor CA, Cairo R, Chichidimo A, Dente G, Modaressi A, Todo Bom LA, Kaynia AM, Anoyatis G and Mylonakis G (2014). “Experimental assessment of seismic pile-soil interaction”. Chapter 26 in Seismic evaluation and rehabilitation of structures. DOI: https://doi.org/10.1007/978-3-319-00458-7_26

Lanzano G, Bilotta E, Russo G, Silvestri F and Madabhushi GSP (2012). “Centrifuge modelling of seismic loading on tunnels in sand”. Geotechnical Testing Journal, 35(6): 854-869. https://doi.org/10.1520/GTJ104348 DOI: https://doi.org/10.1520/GTJ104348

Conti R, Madabhushi GSP and Viggiani GMB (2012). “On the behavior of flexible retaining walls under seismic actions”. Géotechnique, 62(12): 1081-1094.

https://doi.org/10.1680/geot.11.P.029 DOI: https://doi.org/10.1680/geot.11.P.029

Kutter BL, Carey TJ, Hashimoto T, Zeghal M, Abdoun T, Kokkali P, Madabhushi GSP, Haigh SK, Burali d’Arezzo F, Madabhushi SPG, Hung W-Y, Lee C-J, Cheng H-C, Iai S, Tobita T, Ashino T, Ren J, Zhou Y-G, Chen Y-M, Sun Z-B and Manzari MT (2018). “LEAP-GWU-2015 experiment specifications, results and comparisons”. Soil Dynamics and Earthquake Engineering, 113: 616-628.

https://doi.org/10.1016/j.soildyn.2017.05.018 DOI: https://doi.org/10.1016/j.soildyn.2017.05.018

Kutter BL, Carey TJ, Stone N, Li Zheng B, Gavras A, Manzari MT, Zeghal M, Abdoun T, Korre E, Escoffier S, Haigh SK, Madabushi GSP, Madabushi SSC, Hung W-Y, Liao T-W, Kim D-S, Kim S-N, Ha J-G, Kim NR, Okamura M, Sjafruddin AN, Tobita T, Ueda K, Vargas R, Zhou Y-G and Liu K (2019). “LEAP-UCD-2017 Comparison of Centrifuge Test Results”. In: B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer. https://doi.org/10.1007/978-3-030-22818-7_4 DOI: https://doi.org/10.1007/978-3-030-22818-7_4

Tokimatsu K, Suzuki H and Sato M (2005). “Effects of inertial and kinematic interaction on seismic behaviour of pile with embedded foundation”. Soil Dynamics and Earthquake Engineering, 25(7-10): 753-762.

https://doi.org/10.1016/j.soildyn.2004.11.018 DOI: https://doi.org/10.1016/j.soildyn.2004.11.018

Shirato M, Nonomura Y, Fukui J and Nakatani S (2008). “Large-scale shake table experiment and numerical simulation on the nonlinear behaviour of pile-groups subjected to large-scale earthquakes”. Soils and Foundations, 48(3): 375-396.

https://doi.org/10.3208/sandf.48.375 DOI: https://doi.org/10.3208/sandf.48.375

Gajo A and Muir Wood D (1999a). “Severn-Trent sand: a kinematic hardening constitutive model for sands: the q-p formulation”. Géotechnique, 49(5): 595-614.

https://doi.org/10.1680/geot.1999.49.5.595 DOI: https://doi.org/10.1680/geot.1999.49.5.595

Gajo A and Muir Wood D (1999b). “A kinematic hardening constitutive model for sands: the multiaxial formulation”. International Journal for Numerical and Analytical Methods in Geomechanics, 23(9): 925-965. DOI: https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.3.CO;2-D

https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M

Dafalias YF and Manzari MT (2004). “A simple plasticity sand model accounting for fabric change effects”. Journal of Engineering Mechanics, 130(6): 622-634.

https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622) DOI: https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)

Dafalias YF, Papadimitriou AG and Li XS (2004). “Sand plasticity model accounting for inherent fabric anisotropy”. Journal of Engineering Mechanics, 130(11): 1319-1333. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319) DOI: https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)

Taiebat M and Dafalias YF (2008). “SANISAND: Simple anisotropic sand plasticity model”. International Journal for Numerical and Analytical Methods in Geomechanics, 32: 915-948. https://doi.org/10.1002/nag.651 DOI: https://doi.org/10.1002/nag.651

Dafalias YF and Taiebat M (2016). “SANISAND-Z: Zero elastic range sand plasticity”. Géotechnique, 66(12): 999-1013. https://doi.org/10.1680/jgeot.15.P.271 DOI: https://doi.org/10.1680/jgeot.15.P.271

Manzari MT and Dafalias YF (1997). “A critical state two-surface plasticity model for sands”. Géotechnique, 47(2): 255-272. https://doi.org/10.1680/geot.1997.47.2.255 DOI: https://doi.org/10.1680/geot.1997.47.2.255

Pisano F and Jeremic B (2014). “Simulating stiffness degradation and damping in soils via a simple visco-elastic-plastic model”. Soil Dynamics and Earthquake Engineering, 63: 98-109.

https://doi.org/10.1016/j.soildyn.2014.02.014 DOI: https://doi.org/10.1016/j.soildyn.2014.02.014

Boulanger R and Ziotopoulou K (2015). “PM4Sand Version 3: A sand plasticity model for earthquake engineering applications”. Technical Report. PM4Sand Files | PM4Sand (ucdavis.edu)

Kolymbas D (1991). “Computer-aided design of constitutive laws”. International Journal for Numerical and Analytical Methods in Geomechanics, 15: 593-604.

https://doi.org/10.1002/nag.1610150806 DOI: https://doi.org/10.1002/nag.1610150806

Mašín D (2018). “Modelling of soil behaviour with hypoplasticity. Another approach to soil constitutive modelling”. Springer. DOI: https://doi.org/10.1007/978-3-030-03976-9

Gudehus G (1996). “A comprehensive constitutive equation for granular materials”. Soils and Foundations, 36(1): 1-12. https://doi.org/10.3208/sandf.36.1 DOI: https://doi.org/10.3208/sandf.36.1

Von Wolffersdorff PA (1996). “A hypoplastic relation for granular materials with a predefined limit state surface”. Mechanics of Cohesive-Frictional Materials, 1(3): 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3 DOI: https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3

Niemunis A and Herle I (1997). “Hypoplastic model for cohesionless soils with elastic strain range”. Mechanics of Cohesive-Frictional Materials, 2: 279-299.

https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8 DOI: https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8

Wegener D (2013). “Numerical investigation of permanent displacements due to dynamic loading”. PhD Thesis. Institut fur Geotechnik, TU Dresden, Germany.

Wegener D and Herle I (2014). “Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model”. Geotechnik, 37(2): 113-122. https://doi.org/10.1002/gete.201300013 DOI: https://doi.org/10.1002/gete.201300013

Cudny M and Truty A (2020). “Refinement of the Hardening Soil model within the small strain range”. Acta Geotechnica, 15: 2031–2051. https://doi.org/10.1007/s11440-020-00945-5 DOI: https://doi.org/10.1007/s11440-020-00945-5

Martinelli M, Burghignoli A and Callisto L (2016). “Dynamic response of a pile embedded into a layered soil”. Soil Dynamics and Earthquake Engineering, 87: 16-28. https://doi.org/10.1016/j.soildyn.2016.03.021 DOI: https://doi.org/10.1016/j.soildyn.2016.03.021

Miriano C, Cattoni E and Tamagnini C (2016). “Advanced numerical modelling of seismic response of a propped RC diaphragm wall”. Acta Geotechnica, 11(1): 161-175. https://doi.org/10.1007/s11440-015-0378-8 DOI: https://doi.org/10.1007/s11440-015-0378-8

Kowalczyk P and Gajo A (2021). “Influence of pore pressure on natural frequency wandering of structures under earthquake conditions”. Soil Dynamics and Earthquake Engineering, 142: 106534.

https://doi.org/10.1016/j.soildyn.2020.106534 DOI: https://doi.org/10.1016/j.soildyn.2020.106534

Gajo A and Muir Wood D (1997). “Numerical analyses of behaviour of shear stacks under dynamic loading”. Report on work performed under the EC project European Consortium of Earthquake Shaking Tables (ECOEST): Seismic bearing capacity of shallow foundations.

Pastor M, Zienkiewicz OC and Chan AHC (1990). “Generalized plasticity and the modelling of soil behaviour”. International Journal for Numerical and Analytical Methods in Geomechanics, 14: 151-190. https://doi.org/10.1002/nag.1610140302 DOI: https://doi.org/10.1002/nag.1610140302

Dar AR (1993). “Development of a flexible shear-stack for shaking table testing of geotechnical problems”. PhD Thesis. University of Bristol, United Kingdom.

Abate G, Massimino MR, Maugeri M and Muir Wood D (2010). “Numerical modelling of a shaking table test for soil-foundation-superstructure interaction by means of a soil constitutive model implemented in a FEM Code”. Geotechnical and Geological Engineering, 28(1): 37-59. https://doi.org/10.1007/s10706-009-9275-y DOI: https://doi.org/10.1007/s10706-009-9275-y

Abate G and Massimino M (2016). “Dynamic soil-structure interaction analysis by experimental and numerical modelling”. Rivista Italiana di Geotecnica, 2: 44-70.

Régnier J, Bonilla L-F, Bard P-Y, Bertrand E, Hollender F, Kawase H, Sicilia D, Arduino P, Amorosi A, Asimaki D, Boldini D, Chen L, Chiaradonna A, DeMartin F, Elgamal A, Falcone G, Foerster E, Foti S, Garini E, Gazetas G, Gélis C, Ghofrani A, Giannakou A, Gingery J, Glinsky N, Harmon J, Hashash Y, Iai S, Kramer S, Kontoe S, Kristek J, Lanzo G, di Lernia A, Lopez-Caballero F, Marot M, McAllister G, Mercerat ED, Moczo P, Montoya-Noguera S, Musgrove M, Nieto-Ferro A, Pagliaroli A, Passeri F, Richterova A, Sajana S, Santisi d’Avila MP, Shi J, Silvestri F, Taiebat M, Tropeano G, Vandeputte D and Verrucci L (2018). “PRENOLIN: International benchmark on 1D nonlinear site-response analysis -validation phase exercise”. Bulletin of the Seismological Society of America, 108(2): 876-900. https://doi.org/10.1785/0120170210 DOI: https://doi.org/10.1785/0120170210

Bilotta E, Lanzano G, Madabushi GSP and Silvestri F (2014). “A numerical Round Robin on tunnels under seismic actions”. Acta Geotechnica, 9: 563-579. https://doi.org/10.1007/s11440-014-0330-3 DOI: https://doi.org/10.1007/s11440-014-0330-3

Manzari MT, El Ghoraiby M, Zeghal M, Kutter BL, Arduino P, Barrero AR, Bilotta E, Chen L, Chen R, Chiaradonna A, Elgamal A, Fasano G, Fukutake K, Fuentes W, Ghofrani A, Haigh SK, Hung W-Y, Ichii K, Kim DS, Kiriyama T, Lascarro C, Madabhushi GSP, Mercado V, Montgomery J, Okamura M, Ozutsumi O, Qiu Z, Taiebat M, Tobita T, Travasarou T, Tsiaousi D, Ueda K, Ugalde J, Wada T, Wang R, Yang M, Zhang J-M, Zhou Y-G and Ziotopoulou K (2019). “LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results”. In: B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer. https://doi.org/10.1007/978-3-030-22818-7_10 DOI: https://doi.org/10.1007/978-3-030-22818-7_10

Ghofrani A and Arduino P (2018). “Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model”. Soil Dynamics and Earthquake Engineering, 113: 758-770.

https://doi.org/10.1016/j.soildyn.2016.12.001 DOI: https://doi.org/10.1016/j.soildyn.2016.12.001

Gajo A (2010). “Hyperelastic modelling of small-strain anisotropy of cyclically loaded sand”. International Journal for Numerical and Analytical Methods in Geomechanics, 34(2): 111-134.

https://doi.org/10.1002/nag.793 DOI: https://doi.org/10.1002/nag.793

Durante MG (2015). “Experimental and numerical assessment of dynamic soil-pile-structure interaction”. PhD Thesis. Università degli Studi di Napoli Federico II, Italy.

Kowalczyk P (2020). “Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading”. PhD Thesis. University of Trento, Italy. https://dx.doi.org/10.15168/11572_275675

Kowalczyk P (2022). “Resonance of a structure with soil elastic waves released in nonlinear hysteretic soil upon unloading”. Studia Geotechnica et Mechanica, 44(4): 253–266. https://doi.org/10.2478/sgem-2022-0015 DOI: https://doi.org/10.2478/sgem-2022-0015

Kowalczyk P and Gajo A (2023). “Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil”. Open Geomechanics, 4(4): 1-25. https://doi.org/10.5802/ogeo.16 DOI: https://doi.org/10.5802/ogeo.16

Crewe AJ, Lings ML, Taylor CA, Yeung AK and Andrighetto R (1995). “Development of a large flexible shear stack for testing dry sand and simple direct foundations on a shaking table”. European Seismic Design Practice, Elnashai (Ed), Balkema, Rotterdam.

Tan FSC (1990). “Centrifuge and theoretical modelling of conical footings on sand”. PhD Thesis. University of Cambridge, United Kingdom.

Moccia F (2009). “Seismic soil pile interaction: experimental evidence”. PhD Thesis. Universita degli Studi di Napoli Federico II, Italy.

Dassault Systèmes (2019). Abaqus Standard software package.

Gajo A (2019). Fortran subroutine in a format of user defined material (UMAT) of the implementation of the Severn-Trent sand model.

Been K and Jefferies MJ (1985). “A state parameter for sands”. Géotechnique, 35: 99-112.

https://doi.org/10.1680/geot.1985.35.2.99 DOI: https://doi.org/10.1680/geot.1985.35.2.99

Gajo A and Bigoni D (2008). “A model for stress and plastic strain induced nonlinear, hyperelastic anisotropy in soils”. International Journal for Numerical and Analytical Methods in Geomechanics, 32: 833-861.

https://doi.org/10.1002/nag.648 DOI: https://doi.org/10.1002/nag.648

Dietz M and Muir Wood D (2007). “Shaking table evaluation of dynamic soil properties”. 4th International Conference of Earthquake Geotechnical Engineering, June 25-28, Thessaloniki, Greece.

Seed HB and Idriss IM (1970). “Soil moduli and damping factors for dynamic response analysis”. EERC report 70-10. University of California, Berkeley

Kokusho T (1980). “Cyclic triaxial test of dynamic soil properties for wide strain range”. Soils and Foundations, 20(2): 45-60. https://doi.org/10.3208/sandf1972.20.2_45 DOI: https://doi.org/10.3208/sandf1972.20.2_45

Lambe T (1973). “Predictions in soil engineering”. Géotechnique, 23(2): 151-202. DOI: https://doi.org/10.1680/geot.1973.23.2.151

Shahnazari H and Towhata I (2002). “Torsion shear tests on cyclic stress-dilatancy relationship of sand”. Soils and Foundations, 42(1): 105-119.

https://doi.org/10.3208/sandf.42.105 DOI: https://doi.org/10.3208/sandf.42.105

Hardin BO and Black WL (1968). “Vibration modulus of normally consolidated clay”. Journal of the Soil Mechanics and Foundations Division (ASCE), 94: 353-369. https://doi.org/10.1061/JSFEAQ.0001100 DOI: https://doi.org/10.1061/JSFEAQ.0001100

Watanabe K, Pisano F and Jeremic B (2017). “Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media”. Engineering with Computers, 33: 519-545.

https://doi.org/10.1007/s00366-016-0488-4 DOI: https://doi.org/10.1007/s00366-016-0488-4

Uesugi M and Kishida H (1986). “Influential factors of friction between steel and dry sands”. Soils and Foundations, 26(2): 33-46.

https://doi.org/10.3208/sandf1972.26.2_33 DOI: https://doi.org/10.3208/sandf1972.26.2_33

Kuwano R and Jardine RJ (2002). “On the applicability of cross-anisotropic elasticity to granular materials at very small strains”. Géotechnique, 52: 727-749. DOI: https://doi.org/10.1680/geot.52.10.727.38848

https://doi.org/10.1680/geot.2002.52.10.727 DOI: https://doi.org/10.1680/geot.2002.52.10.727

Kowalczyk P (2023). “Some remarks on the performance of three advanced soil constitutive models in the small-strain region”. International Journal of Geotechnical Engineering, 17(3): 310-319.

https://doi.org/10.1080/19386362.2023.2208917 DOI: https://doi.org/10.1080/19386362.2023.2208917

Jardine R (1992). “Some observations on the kinematic nature of soil stiffness”. Soils and Foundations, 32(2): 111-124. https://doi.org/10.3208/sandf1972.32.2_111 DOI: https://doi.org/10.3208/sandf1972.32.2_111

Senetakis K, Madhusudhan BN and Anastasiadis A (2016). “Wave propagation and threshold strains of fully saturated soils with intraparticle voids”. Journal of Materials in Civil Engineering, 28(2): 1-11.

https://doi.org/10.1061/(ASCE)MT.1943-5533.0001367 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001367

Roessett JM (1970). “Fundamentals of soil amplification”. In Seismic Design for Nuclear Power Plants. The MIT Press, Cambridge, MA, 183-244.

Garini E, Anastasopoulos I and Gazetas G (2020). “Soil, basin and soil-building-soil interaction effects on motions of Mexico City during seven earthquakes”. Géotechnique, 70(7): 581-607. https://doi.org/10.1680/jgeot.18.P.314 DOI: https://doi.org/10.1680/jgeot.18.P.314

Kowalczyk P (2022). “Proposal of a model setup for verification of the origin of high frequency motion in soil”. 5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 30 June-2 July, Nicosia, Northern Cyprus.

https://link.springer.com/chapter/10.1007/978-3-031-20172-1_37

Kowalczyk P (2024). “Experimental proof supporting the idea of elastic waves released in soil nonlinear small strain behaviour” (Currently under development, title and authorship to be confirmed).

Kowalczyk P (2024). “New evidence on advantages of nonlinear site response analysis in modelling wave propagation in soil”. 8th International Conference in Earthquake Geotechnical Engineering, 7-10 May, Osaka, Japan. https://doi.org/10.3208/jgssp.v10.OS-3-01 DOI: https://doi.org/10.3208/jgssp.v10.OS-3-01

Downloads

Published

01-09-2024

How to Cite

Kowalczyk, P. (2024). Performance of an advanced sand constitutive model in modelling soil and soil-structure interaction under seismic excitation. Bulletin of the New Zealand Society for Earthquake Engineering, 57(3), 128–142. https://doi.org/10.5459/bnzsee.1667

Issue

Section

Articles

Categories