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SUMMARY 

The use of hybrid joints to provide pre-cast concrete and timber structures with ductile response and self-

centering capability is becoming increasingly popular in New Zealand, as is evident by the increasing 

number of building solutions that incorporate the technology as well as the design provisions for hybrid 

systems currently included in the New Zealand Concrete standard. This paper raises some issues with the 

current code approach to estimate the inelastic seismic displacement demand on hybrid systems. The 

work then presents the results of a series of non-linear time history analyses of single degree of freedom 

(SDOF) systems characterised by the flag-shaped hysteretic rule, in order to identify a general, improved 

expression for the equivalent viscous damping of hybrid systems. The new equivalent viscous damping 

expression is expected to provide more reliable control of inelastic displacement demands for hybrid 

systems design used Displacement-Based Design (DBD) procedures. In addition, the last part of the 

paper also discusses how the findings in the paper could be utilised to provide improved control of 

displacement demands when hybrid systems are designed using force-based procedures.  
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INTRODUCTION 

Hybrid joint systems have been developed over the past two 

decades (see [1] to [7]) in order to provide both pre-cast 

concrete and, more recently, timber structures with ductile 

response and self-centering capabilities. For a detailed 

background to the technology available for RC systems see 

[8]. The potential of hybrid systems is now fairly well 

recognised in New Zealand, as is evident by the increasing 

number of building solutions ([9], [10]) that incorporate the 

technology as well as the design provisions included in 

Appendix B of NZS3101 [11] and the Press Design Handbook 

[8]. Joints of hybrid pre-cast concrete systems resist seismic 

actions through a combination of pre-stressing (that provides 

self-centering capacity) and yielding non-prestressed 

reinforcement or other special devices that provide energy 

dissipation. The hysteretic moment-rotation response of hybrid 

systems can be idealised by the flag-shaped hysteretic 

response illustrated in Figure 1. 

The hysteretic loop reported in Figure 1 is an idealization of 

the actual response, as experimental results (see, for example, 

[12] to [17]) show that in reality the loops will be curved and 

may not go perfectly through the origin. However, the 

simplified hysteretic shape defined in Figure 1 is considered to 

contain the main characteristics that are needed to examine the 

non-linear dynamic response of hybrid systems and 

experimental data shows that this idealization can provide 

acceptable results [18], [19], [20]. 

 

 

 

Given that the purpose of this paper will be to provide 

engineers with new design relationships that permit, in a 

simplified fashion, improved inelastic displacement 

predictions for hybrid systems, the flag-shape model is used in 

this work. Nevertheless, since a flag-shape hysteresis loop is 

only an approximate idealisation to the real hysteretic 

behaviour of hybrid systems, for detailed non-linear time-

history analyses of specific hybrid systems refined alternative 

models should be considered.  

The seismic behaviour of hybrid systems is considerably 

influenced by the relative proportions of resistance offered by 

pre-stressing and dampers. To characterise the relative 

proportions of joint resistance, the factor λ defined by 

Equation (1) is often used and this is equal to the ratio of the 
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Figure 1: Flag-shaped hysteretic response of hybrid 

structures. 
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prestressing bending resistance, MPT, to the dampers (mild 

steel bars for traditional RC hybrid systems) bending 

resistance contribution, MMS, (see Figure 1): 

MS

PT

M

M
  (1) 

Hence, with increasing lambda factor, λ, the flag shape tends 

to be ‘‘thinner’’ and the energy dissipated in a loop decreases. 

A similar parameter used to gauge the proportions of 

resistance is the β factor, also shown in Figure 1 and related to 

the λ factor by Equation (2): 
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This definition is useful since the β factor is input in 

Ruaumoko [21] for Non-Linear Time-History (NLTH) 

analyses of hybrid systems with flag-shaped hysteresis. Note 

that in addition to the λ factor, another hysteretic characteristic 

that can have a significant effect on the non-linear dynamic 

response of hybrid systems is the post-yield stiffness ratio, r.  

In this paper, current expressions for the inelastic 

displacement prediction of hybrid systems will be reviewed 

and an improved means of predicting the inelastic 

displacement of hybrid systems with account for their 

different hysteretic characteristics will be proposed, based on 

the results of non-linear time-history analyses. 

INELASTIC DISPLACEMENT ESTIMATES OF 

HYBRID SYSTEMS ACCORDING TO THE NEW 

ZEALAND STANDARD 

A key parameter for good seismic performance of a building is 

the peak deformation (displacement or peak storey drift) that 

the building experiences during an earthquake. In fact, the 

strength and stiffness of hybrid systems is often governed by 

the need to satisfy code defined deformation limits, such as 

those defined in Section 7 of the New Zealand Earthquake 

Loadings Standard (NZS1170 part 5 [22]), possibly modified 

in line with the recommendations of NZS3101. In practice, the 

New Zealand Concrete Structures Standard (NZS3101-2006 

[11]) permits the design of hybrid systems through either 

force-based or displacement-based design procedures.  

For displacement-based design of pre-cast hybrid systems, 

NZS3101 permits the equivalent viscous damping to be 

interpolated between a value of 5% (corresponding to an 

unbonded connection) and an expression for a monolithic 

frame system, leading to the hybrid equivalent viscous 

damping expression of Equation (3): 
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where μ is the displacement ductility demand. Note that this 

paper will show that this simplified formulation for the 

equivalent viscous damping of hybrid systems is not accurate 

and alternative expressions should be used. 

Equivalent viscous damping expressions of the form given by 

Eq.(3) can be used to control the inelastic displacement of the 

hybrid system in line with the Direct DBD approach (Priestley 

et al. [23]) or the capacity spectrum approach (Freeman; [24], 

[25]). In these approaches the elastic response spectra are 

scaled to the system equivalent viscous damping value by 

using damping spectral reduction expressions such as that 

given in Equation (4), recommended by Priestley et al. [23]) 

and included in the 1993 version of the Eurocode 8 [26]: 
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where ξeq is the equivalent viscous damping, which is defined 

by the sum of elastic and hysteretic damping. 

Note that other damping spectral reduction expressions have 

been proposed in the literature, as will be discussed further 

later in the paper. Figure 2 shows an elastic response spectrum 

and a highly damped spectrum obtained by factoring the 

spectral ordinates by the η factor obtained from Equation (4).  

The spectra are plotted on axes of acceleration versus 

displacement by pairing the spectral acceleration at a given 

period with the spectral displacement at the same period and 

then plotting these coordinates as a series of points on 

acceleration-displacement axes. By plotting the spectra in this 

format, the non-linear force-displacement response of a SDOF 

hybrid system can be superimposed, as shown in Figure 2, 

noting that the system acceleration can be multiplied by mass 

to obtain an equivalent force value (which is likely to be more 

familiar to designers). 

In Direct DBD, the designer identifies the target displacement 

for the system and then reads off a required effective period 

from a highly-damped displacement response spectrum, which 

is then used to obtain a required effective stiffness and design 

base shear (see [23]). 
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Figure 2:  Means of identifying the inelastic displacement according to displacement-based and force-based design 

approaches. 
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This is equivalent to identifying the target displacement (Δin) 

along the horizontal axis of Figure 2, and then finding the 

required acceleration (which multiplied by mass gives the 

required system strength) from the intersection point with the 

highly damped spectrum. This approach, and in particular the 

use of the effective stiffness, stems from the substitute 

structure concepts introduced by Gulkan and Sozen [27], and 

Shibata and Sozen [28].  

The same concepts are incorporated within the capacity 

spectrum approach [24] but, as pointed out by Priestley et al. 

[23], the Capacity Spectrum approach is formulated as an 

assessment procedure since the designer should first develop 

and then plot the acceleration-displacement curve for the 

system, which suggests that the designer already knows the 

system strength. Equivalent viscous damping values for each 

point along the acceleration-displacement pushover curve are 

then established through Equation (3), and then the expected 

inelastic response is found by indentifying the highly damped 

spectrum that intersects the acceleration-displacement curve at 

the same value of equivalent viscous damping (for further 

details see [24] or [25]). 

Irrespective of whether designers prefer to use the equivalent 

viscous damping within a Direct DBD or a Capacity Spectrum 

approach, it is clear that by including the equivalent viscous 

damping expression of Equation (3) in NZS3101 [11], 

designers are provided with a rational means of controlling the 

inelastic displacements of hybrid systems. 

On the other hand, neither Appendix B of the NZ Concrete 

Standard nor the NZ Earthquake Loadings Standard [22] 

appear to provide special guidance on how the inelastic 

displacements should be controlled when designing hybrid 

systems using a force-based design method such as the 

equivalent lateral force method or the modal response 

spectrum method. The Commentary to the NZ Concrete 

Standard does make reference to the fib Bulletin 27 [29] 

which argues that force-based design can be used for hybrid 

systems provided that the force-reduction factor accounts for 

the joint hysteretic characteristics. For inelastic displacement 

prediction, the fib Bulletin 27 recommends that for medium 

and long period systems the inelastic displacements be 

estimated through the equal displacement rule which implies 

that the inelastic displacement of the system is expected to be 

approximately equal to the displacement of an equivalent 

elastic system with the same initial period of vibration. 

Similarly, if a designer wishes to estimate the inelastic 

displacement of a hybrid system according to NZS1170 part 5, 

then one would assume that the same approach used for other 

structural systems is adopted; the displacements obtained from 

an inelastic spectrum are amplified by the ductility factor, μ, in 

line with the equal displacement approximation (when 

building period is such that kμ = μ).  

The equal displacement concept can also be illustrated with 

reference to Figure 2. In the equal displacement approach, the 

initial period is first used to identify the elastic spectral 

displacement, Δel, (and note that this is equivalent to the 

displacement obtained from inelastic design spectra of 

NZS1170 amplified by the ductility, μ). The equal 

displacement approach then states that the inelastic 

displacement, Δin, should be approximately equal to the elastic 

spectral displacement, Δel, and so the elastic displacement is 

used to verify whether or not deformation limits are satisfied.   

The equal-displacement approximation appears to stem 

principally from the work of Velestos and Newmark [30] and 

Riddell and Newmark [31]. In their work, the peak inelastic 

response of elasto-plastic, bi-linear and stiffness degrading 

SDOF systems, determined through NLTH analyses, was 

compared against that predicted using the initial period with 

elastic response spectra and the general “equal-displacement” 

trend was observed for medium and long period structures. As 

reported by Priestley et al. [23] amongst others, NLTH 

analysis results have shown that the equal displacement 

approximation is non-conservative for flag-shaped hysteretic 

systems subject to medium and high ductility demands, 

particularly if tangent-stiffness based elastic damping is 

assumed. As a consequence, designers following the New 

Zealand Standard recommendations for force-based design of 

hybrid systems are likely to be unwittingly underestimating 

the peak displacements (and therefore the damage) that the 

buildings will undergo. This suggests that until a new inelastic 

to elastic spectral displacement relationship is specified for 

hybrid systems, engineers should be advised to use an 

equivalent viscous damping approach for the design of such 

systems.  

Returning to the recommendation to use Equation (3) for the 

equivalent viscous damping of hybrid systems, it will be 

shown that this expression is also considered to be of limited 

accuracy owing to its simplicity. The expression assumes that 

the equivalent viscous damping can be interpolated from 

upper and lower bound expressions for equivalent viscous 

damping of completely different hysteretic shapes. Other 

equivalent viscous damping expressions having been 

developed specifically hybrid systems, as will be discussed in 

more detail in the next section, but the expressions are not 

generalised to account for a wide range of hysteretic 

characteristics that one could expect for hybrid systems. Given 

the apparent importance of equivalent viscous damping 

expressions for the design of hybrid systems, this work will 

present the results of a series of NLTH analyses that will be 

used to highlight the performance of the current expression in 

NZS 3101 and propose an improved expression for design. 

The work will also then review the results of the NLTH 

analyses in order to indicate how a compatible force-based 

design approach might be formulated. 

A REVIEW OF EXISTING EXPRESSIONS FOR THE 

EQUIVALENT VISCOUS DAMPING OF HYBRID 

SYSTEMS 

As stated in the previous section, there are a number of 

different equivalent viscous damping expressions proposed in 

the literature. Through a series on NLTH analyses using a set 

of artificial accelerograms, Grant et al. [32] developed 

Equation (5) for hybrid systems with λ = 4.7: 
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In a similar manner, Pennucci et al. [33] also used the results 

of NLTH analyses to set an expression (Equation 6) for the 

equivalent viscous damping of hybrid systems with λ = 1.25: 
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Recently, Mpampatsikos et al. [34] also used NLTH analyses 

to develop the following more general expression (Equation 7) 

for the equivalent viscous damping of hybrid systems: 
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However, note that while this expression does cover a range of 

λ factors, it does not take into account the influence of the 

post-yield stiffness factor r.  
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Figure 3: Comparison of different equivalent viscous 

damping expressions proposed for hybrid 

systems in the literature: (a) hybrid systems 

with λ = 1.25 and (b) hybrid systems with λ = 

4.7. 

Figure 3 compares the equivalent viscous damping obtained 

by the different expressions with that predicted by the current 

expression in the New Zealand Standard, for lambda values of 

λ = 1.25 and λ = 4.7. Interestingly there are significant 

differences between the existing expressions for the equivalent 

viscous damping. However, it is comforting to note that the 

NZS3101 expression appears to provide the most conservative 

estimates of equivalent viscous damping between the different 

expressions. 

Given the uncertainty raised by the comparison of existing 

equivalent viscous damping expressions in Figure 3, this work 

will consider a large number of hybrid systems characterised 

by different lambda factors, λ, and the post-yield stiffness 

ratios, r, as part of a NLTH analysis campaign aimed at 

developing a general improved expression for the equivalent 

viscous damping of hybrid structures and thereby better 

control of displacements and damage. 

METHODOLOGY USED TO DEVELOP NEW 

EQUIVALENT VISCOUS DAMPING EXPRESSION 

With the aim of developing expressions for estimation of 

equivalent viscous damping of hybrid concrete structures, to 

be used in a displacement based design procedure, this section 

studies the analytical response of different SDOF systems with 

flag shaped hysteresis behaviour, simulating the inelastic 

response of this kind of hybrid structures under different 

ground motions records. 

Procedure 

The scope of the procedure is to determine the value of 

equivalent viscous damping to be applied to an equivalent 

elastic system with a given effective period (based on the 

secant stiffness to maximum displacement response) such that 

the highly damped linear system predicts the same 

displacement as an inelastic system with flag shaped 

hysteresis rule that, when subject to non-linear time-history 

analysis (NLTHA), develops the same effective period to 

develop for a given level of ductility.  

The final objective of the procedure is to develop equations 

that define the equivalent viscous damping factor to be used in 

the DDBD of hybrid structures, as a function of the ductility 

demand. The flow diagram for the proposed method is shown 

in Figure 5. 

The methodology for the equivalent viscous damping 

estimation can be described step by step as follows: 

Step 1: Initially, select the parameters that describe the SDOF 

system, hence an effective period (Teff), an effective mass 

(meff) and a ductility level (μ) are selected. 

Step 2: Select the flag-shaped hysteresis rule for the inelastic 

behaviour the SDOF system, defining the hysteretic 

parameters; the shape factor β and the post-yield stiffness 

factor r.  

Step 3: Select an accelerogram, from the ground motion set 

presented in the Table 1. 

Step 4: Define an ultimate displacement (Δu). The ultimate 

displacement is defined arbitrarily since it is only a target 

displacement that will be reached during the non linear time 

history analysis by an iterative process as indicated in Steps 5 

to 8. 

Step 5: For the given SDOF system, the initial stiffness (Ko) 

and yield force (Fy), are computed considering the selected 

ultimate displacement (Δu), effective mass (meff), effective 

period (Teff) and the ductility (μ) as follows. 

Effective stiffness: 
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Maximum force: 

ueffKF max  (9) 

 

Yield force: 
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Yield displacement: 



u
y


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Step 6: Run non-linear time-history analysis of a SDOF 

system with yield strength Fy from Equation (10), yield 

displacement Δy from Equation (11) and hysteretic parameters 

matching those in step 1. Get the maximum displacement 
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response (Δmax) from the hysteresis behaviour that comes out 

from the NLTHA. 

Step 7: Compare the maximum displacement (Δmax) obtained 

from NLTHA with the ultimate displacement defined initially 

(Δu). 

Step 8: If the difference between displacements from Step 7. 

are negligible, within a tolerance of 3%, continue with step 9, 

otherwise, scale the accelerogram and return to step 6 running 

non-linear time-history analysis with the scaled ground motion 

record, until the excitation generates a displacement within the 

specified tolerance. In other words, this step identifies the 

intensity of the ground motion that would cause the target 

displacement and ductility to develop. 

Note that the process is principally dependent only on the 

period, hence it is irrelevant what mass is selected, because the 

period will control the stiffness and strength required. Any 

combination of mass and stiffness (and Fy / Mass) that gives 

the same period will give equivalent results. 

Step 9: Compute the displacement response spectrum for the 

scaled accelerogram considering damping values from 0% to 

30%. Find the displacement response spectra for which the 

point defined by Teff and Δu, matches closest the response 

spectra, as shown in Figure 4. That chosen spectra corresponds 

to a specific damping value that defines the equivalent viscous 

damping for the SDOF system under study. Hence, it is found 

the equivalent viscous damping for the given SDOF system. 

 

 

 

 

The displacement spectra for all the different values of 

damping, mentioned before, were computed using the program 

for processing strong-motion data, SeismoSignal [35], getting 

the elastic displacement response spectra for a given 

accelerogram and damping. 

Accelerograms and displacement spectra 

Accelerograms 

For the present study, two kinds of strong ground motion 

records were used, representing both far-field and near-fault 

events. All records were taken from the PEER online strong 

ground motion database, from the Pacific Earthquake 

Engineering Research Center, University of California at 

Berkeley [36]. 

 

 

 

The first suite of earthquakes is an ensemble of 20 historical 

‘far-field’ strong ground motion records. These records were 

related to soil types C or D (NEHRP categories), with 

hypocentre depth ranging between 13 and 25 km, and were 

generated by earthquakes of moment magnitude, Mw, ranging 

from 6.7 to 7.3. The second suite of earthquakes is an 

ensemble of 10 historical near-fault earthquake records, 

selected based on its PGV/PGA ratio (at least 0.09 ms-1/ms-2) 

and distance from fault (less than 10 km) (Kam et al. [37]; 

Christopoulos et al. [38]). It is important to say that key 

characteristics of near-field events are a low number of cycles 

and high velocity pulses which can yield larger displacement 

and ductility demands on the structures as reported in [37] 

where one can also find additional information about some of 

the selected records, which were used for previous studies. 

Records considered in the study are not necessarily spectrum 

compatible and this characteristic is not a requirement in order 

to obtain a wide range of results representing the influence of 

all different parameters involved in ground motion records. 

Elastic Displacement Response Spectra  

from ξ = 0% to ξ = 30%  

 

SDOF parameters: 

Teff , meff , and  μ 

Flag-shaped hysteresis parameters: 

λ (or β), and r 

Accelerogram 

Target ultimate  

displacement: Δu 

SDOF parameters: 

Keff , Fmax , Fy , and  Δu  

Non-Linear Time-History 

Analysis (NLTHA)  

Maximum displacement 

response:  Δmax 

 

NO 

Scale 

Accelerogram 

YES 

Teff , Δu 

Equivalent Viscous Damping:  

ξeq  

Δmax = Δu 

 

Figure 5:  Flow diagram for the EVD estimation procedure. 

T  

Δu 

Teff  
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Figure 4:  Step 9 - Spectral matching to obtain EVD values. 
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Table 1.   Selected ground motions. 

 

Label 
Earthquake Name / Station 

Name 
Magnitude 

ClstD 

(km) 

EQ1 
Imperial Valley-06 / El Centro 

Array #7 
6.53 0.6 

EQ2 Imperial Valley-06 / Delta 6.53 22 

EQ3 
Imperial Valley-06 / Superstition 

Mtn Camera 
6.53 24.6 

EQ4 
Superstition Hills-02 / Brawley 

Airport 
6.54 17 

EQ5 
Superstition Hills-02 / El Centro 

Imp. Co. Cent 
6.54 18.2 

EQ6 Erzican, Turkey / Erzincan 6.69 4.4 

EQ7 
Northridge-01 / Sylmar- live 

View Med FF 
6.69 5.3 

EQ8 
Northridge-01 / Newhall - Fire 

Sta 
6.69 5.9 

EQ9 
Northridge-01 / Rinaldi 

Receiving Sta 
6.69 6.5 

EQ10 
Northridge-01 /  N.Hollywood-

Coldwater Can 
6.69 12.5 

EQ11 
Northridge-01 / Canoga Park - 

Topanga Can 
6.69 14.7 

EQ12 
Northridge-01 / Glendale - Las 

Palmas 
6.69 22.2 

EQ13 
Northridge-01 /  LA - UCLA 

Grounds 
6.69 22.5 

EQ14 
Northridge-01 / LA - Hollywood 

Stor FF 
6.69 24 

EQ15 
Northridge-01 / Santa Monica 

City Hall 
6.69 26.5 

EQ16 Northridge-01 / LA - Saturn St 6.69 27 

EQ17 Kobe, Japan /  KJMA 6.9 1 

EQ18 
Loma Prieta / Los Gatos - 

Lexington Dam 
6.93 5 

EQ19 
Loma Prieta / Saratoga - W 

Valley Coll. 
6.93 9.3 

EQ20 Loma Prieta / Gilroy Array #3 6.93 12.8 

EQ21 Loma Prieta / WAHO 6.93 17.5 

EQ22 Loma Prieta / UCSC 6.93 18.5 

EQ23 
Loma Prieta / Hollister Diff. 

Array 
6.93 24.8 

EQ24 Cape Mendocino / Petrolia 7.01 8.2 

EQ25 
Cape Mendocino / Rio Dell 

Overpass - FF 
7.01 14.3 

EQ26 Landers / Lucerne 7.28 2.2 

EQ27 Landers / Coolwater 7.28 19.7 

EQ28 Landers / Desert Hot Springs 7.28 21.8 

EQ29 Landers / Yermo Fire Station 7.28 23.6 

EQ30 Tabas, Iran / Tabas 7.35 2.1 

Shape of displacement spectra  

Reviewing the shape of the displacement spectra for each of 

the records listed in Table 1, it was noted that half of the 

records did not possess linearly increasing spectral 

displacement demands over the period range of interest to this 

study. Work by Pennucci et al. [39] has shown that spectral 

shape is important for the development of inelastic 

displacement prediction equations. Consequently, from the 30 

records initially selected, only the 15 records that possess 

linearly increasing displacement spectra were finally used for 

calibration of the new equivalent viscous damping expression 

in this work. See [40] for further details and discussion. 

Modelling 

Using the program Ruaumoko [21], SDOF systems are 

modelled considering zero length translational springs with 

flag shaped hysteresis loop, running non-linear time history 

analysis. Dynamic inelastic time history analyses were 

conducted using the Newmark constant average acceleration, 

with a lumped mass matrix, and tangent stiffness Rayleigh 

damping model with 5% of critical damping. 

For the hysteretic behaviour of the SDOF systems, the 

inelastic response is represented by the flag shaped hysteresis 

rule. The flag shape factor (β), initial stiffness (Ko), yield force 

(Fy), post yield stiffness factor (r), effective mass (meff), and 

the ductility (μ) are inputs according to the case under study.  

The main variables for this study are the post-yield stiffness 

factor (r) and the flag shape factor (β), which can be expressed 

also in terms of (λ). In order to see the influence of the 

variation of such hysteresis parameters on the inelastic 

displacements, values of r between 0.05 and 0.20, and values 

of l between 1.0 and 9.0 were examined, as shown in Table 2. 

Table 2.  Considered post-yield stiffness, flag shape factors, 

effective period and ductility values. 

Parameter Considered values 

r 0.05,  0.10,  0.15,  0.20 

λ (β) 
1.0 (1.0),  1.5 (0.8),  2.0 (0.67),   

3.0 (0.5),  5.1 (0.33),  9.0 (0.2) 

Teff  [s] 0.5,  1.0,  1.5,  2.0,  2.5,  3.0,  3.5,  4.0 

μ 1.5,  2.0,  3.0,  4.0,  5.0,  6.0 

 

Also note that for the parametric study it is important to 

analyse the behaviour of different SDOF systems, and for this 

reason it was considered necessary to introduce variables that 

describe the SDOF characteristics, such as the effective period 

(Teff) and the ductility (μ). The range of these values 

considered in the work are also listed in Table 2. 

In order to illustrate the modelling of Non-Linear Time 

History Analysis, Figure 6 shows the hysteretic behaviour of 

different SDOF systems subjected to some of the ground 

motions records previously described. Each subplot in Figure 

6 corresponds to the inelastic behaviour of a SDOF system 

with effective period (Teff), ductility (μ), and characterized by 

a hysteretic rule with flag shape factor (β) and post yield 

stiffness factor r, subjected to a given earthquake. 
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Figure 6:  Examples of Hysteretic loops, for different SDOF systems and ground motions.  

RESULTS OF EQUIVALENT VISCOUS DAMPING 

STUDY 

Applying the procedure described in the previous section to 

the range of hybrid SDOF systems identified in Table 2, a 

large quantity of results are obtained that provide equivalent 

viscous damping (EVD) data points. In order to interpret the 

results, it is necessary to organize the data and results to find 

the curves that best fit the EVD tendency. The data fitting 

procedure is explained and illustrated below. 

NLTHA results and processing procedure 

Having obtained EVD results for a large number of cases, it is 

important to understand the influence of the variables on the 

EVD. However, because the amount of results is very large, it 

is necessary to compute average values of the hysteretic 

damping, for each studied effective period and ductility, 

distinguishing between the post-yield stiffness factor (r) and 

flag shape factor (β).  

Every selected SDOF system, with specific effective period, 

ductility and hysteretic parameters, was analysed under all 

considered ground motion records, providing a range of 

equivalent viscous damping values for each SDOF system due 

to the differences between the accelerograms. Hence, to 

condense the results for a set of calculated values, the mean 

and the coefficient of variation (C.O.V.) of the EVD were 

calculated. Consequently, for a SDOF with effective period 

(Teff), ductility (μ) and hysteretic parameters (r and β), the 

average equivalent viscous damping is obtained.  

Additionally, it was seen that spikes in the elastic response 

spectra cause a large dispersion in the apparent EVD values. 

At the same time, it is expected that the variation of the results 

due to such spikes is random, with the approach sometimes 

overestimating the damping and sometimes underestimating 

the damping, such that the average of the equivalent viscous 

damping values should be representative, justifying the use of 

average values to overcome this issue. 

Figure 7 to Figure 10 show the behaviour and tendency of the 

EVD for a given value of post-yield stiffness ratio, r and flag 

shape depth factor, β in terms of ductility and effective period. 

Note that the EVD values shown take the average results from 

the set of accelerograms applied to each SDOF system.  

The results illustrate that the damping depends on the flag 

depth (, or  if preferred) and the post-yield stiffness ratio. 

There is also a tendency for the damping to increase with the 

ductility, but not very greatly, and at short effective periods 

the EVD tends to be higher suggesting some period 

dependency. However, for periods from 1.0s to 4.0s the EVD 

values hover around the same level. These trends were 

considered in setting a new EVD expression. 



8 

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]
for  = 1.00

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]

for  = 0.80

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]

for  = 0.67

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]

for  = 0.50

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]
for  = 0.33

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
e

q
 [
%

]

for  = 0.20

 

 

Teff=0.5

Teff=1.0

Teff=1.5

Teff=2.0

Teff=2.5

Teff=3.0

Teff=3.5

Teff=4.0

 

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 1.00

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 0.80

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 0.67

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 0.50

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 0.33

1 2 3 4 5 6
0

5

10

15

20

 [-]

 
h

y
s
t 
[%

]

for  = 0.20

 

 

Teff=0.5 Teff=1.0 Teff=1.5 Teff=2.0 Teff=2.5 Teff=3.0 Teff=3.5 Teff=4.0
 

Figure 7: Average Equivalent Viscous Damping for r = 0.05. 
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Figure 8:  Average Equivalent Viscous Damping for r = 0.10. 
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Figure 9:  Average Equivalent Viscous Damping for r = 0.15. 
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Figure 10:  Average Equivalent Viscous Damping for r = 0.20. 
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Fitting of EVD expressions to NLTHA results 

In order to develop an expression for the equivalent viscous 

damping that keeps a similar form of that used by Grant et al. 

[32] and Pennucci et al. [33] but with the ability to consider 

different λ and r values directly as per the Jacobsen 

formulation (refer [23]), the following form of Equivalent 

Viscous Damping expression should be developed: 

    







 











1

111
05.0

r

C
eq  (12) 

 

where C is a constant that is used to obtain the best fit with the 

NLTHA results. 

Following this process for the NLTHA results presented in the 

previous section, it was found that the coefficient C can be 

expressed as a function of λ and the post-yield stiffness ratio, 

r, as shown in Equation (13). 

  
    








 















1

111

11324.0
05.0

r

r
eq  (13) 

 

Readers interested in reviewing the complete procedure used 

to fit Equation (13) to the NLTH analysis results should refer 

to [40]. 

Finally, 3D plots are elaborated as a function of the flag-

shaped factor, the ductility and the post-yield stiffness factor, 

where Equation (13) is plotted for four different cases of r, as 

is shown in Figure 11. 

USING THE NEW EQUIVALENT VISCOUS DAMPING 

EXPRESSION TO CONTROL INELASTIC 

DISPLACEMENTS 

Clearly, the main objective of establishing the new equivalent 

viscous damping expression (Equation 13) is to provide 

practitioners with an improved means of controlling inelastic 

displacements. To this extent, recall that in the displacement-

based design procedures described earlier, inelastic 

displacements are related to the elastic response spectra by 

scaling the elastic response spectra using a damping spectral 

reduction equation such as that reported earlier in Equation 

(4). The relationship between elastic design spectra and 

inelastic displacements is therefore dependent on both the 

equivalent viscous damping and the damping spectral 

reduction equation. Note that there are actually a large number 

of damping spectral reduction equations proposed in the 

literature. For example, in the 2003 revision to Eurocode 8 

[26] Equation (4) was replaced by Equation (14), 

5.0

05.0

10.0













  (14) 

 

Work by Faccioli et al. [41] has indicated that this expression 

represents the effect of viscous damping on the elastic spectra 

of real earthquake records better than Equation (4) that was 

included in the earlier version of Eurocode 8. Priestley et al. 

[23] recommend, however, that when designing non-linear 

systems with the equivalent viscous damping expressions 

presented in their book, Equation (4) should be used to scale 

the design response spectrum as a function of damping, even if 

the spectra of real records at the site may scale according to 

Equation (14) or another damping reduction equation.  
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Figure 11:  3D plots for the proposed EVD expression for different post-yield factors. 



11 

Recently, Pennucci et al. [39] have obtained analytical results 

that support this recommendation of Priestley et al. [23]. 

Pennucci et al. found that equivalent viscous damping 

expressions for non-linear systems, calibrated to the results of 

NLTH analyses, should be used in combination with the 

spectral damping reduction expression that characterises the 

records used for the NLTH analyses. As already stated, this 

finding supports the recommendation of Priestley et al. [23]. 

Another way of interpreting the finding of Pennucci et al. [39] 

is that the η factor itself should be directly a function of the 

hysteretic characteristics and expressions for η can therefore 

be formed by incorporating equivalent viscous damping 

expressions directly into damping reduction equations. 

As reported earlier, 15 real earthquake records were used in 

this work to run the non-linear time-history analyses and 

calibrate the new equivalent viscous damping expression 

proposed for hybrid systems. By considering the elastic 

spectra at a range of viscous damping levels, it is found that 

the damping spectral reduction equation that best characterises 

the 15 selected records is given by: 

5.0

065.0

115.0













  (15) 

 

Inserting Equation (13) into Equation (15), gives: 
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
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r

r
 (16) 

Also note that since the spectral reduction factor has been 

calibrated to match the maximum inelastic displacements 

obtained from non-linear time-history analyses, the reduction 

factor can be considered as the ratio of the inelastic 

displacement to the elastic spectral displacement at the 

effective period, Δel,Te (see Figure 2), as stated in Equation 

(17): 

Teel

in

,


  (17) 

 

This relationship helps emphasise the usefulness of Equation 

(16) for the control of inelastic displacements.  The benefit of 

developing Equation (16) is that it permits the spectral 

displacement reduction factor to be calculated directly as a 

function of the hysteretic characteristics and ductility demand. 

Moreover, however, the process of inserting the equivalent 

viscous damping expression into the damping reduction 

equation permits a more appropriate comparison of existing 

equivalent viscous damping expressions. 

Figure 12 presents a comparison of existing expressions for 

the spectral displacement reduction factor, η, with the new 

expression given by Equation (16). Note that in developing the 

curves from the Pennucci et al. [33] and Mpampasikos et al. 

[34] equivalent viscous damping expressions, the elastic 

damping expression of Equation (14) was used since this best 

matched the real records they utilised for their NLTH 

analyses. In contrast, in order to develop the curve shown for 

Grant et al. [32], the elastic damping expression of Equation 

(4) was used since this best matched the artificial records they 

utilised for their NLTH analyses. The results of Figure 12 are 

very encouraging. It can be seen that three independent 

studies, conducted using different sets of accelerograms, all 

provided very similar expressions for the spectral 

displacement reduction factor for hybrid systems. The good 

correlation between the new and existing expressions 

somewhat validates the new Equivalent viscous damping 

expression in Equation (13) or, if preferred, the direct spectral 

displacement reduction expression given by Equation (16). 

These new expressions could therefore be used as part of a 

displacement-based design approach to obtain more reliable 

control of the inelastic displacement demands on hybrid 

systems. 

 

 

 

 

APPLICATION OF NEW KNOWLEDGE WITHIN 

FORCE-BASED DESIGN OF HYBRID SYSTEMS 

As discussed in the introduction, the New Zealand Standard 

NZS3101 permits the design of RC hybrid systems using 

either force-based or displacement-based design procedures. 

This research has developed Equation (13) and Equation (16) 

for the improved prediction of inelastic displacement demands 

of hybrid systems within a displacement-based design context. 

Equation (16) can also be useful for the prediction of inelastic 

displacements as part of a force-based design approach, as will 

be shown here. 

Firstly, note that with knowledge of the expected system 

ductility demand, μ, and post-yield stiffness ratio, r, (refer 
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Figure 12: Comparison of developed η factor with the 

expressions presented in the literature: (a) 

hybrid systems with λ =1.25 and (b) hybrid 

systems with λ = 4.7. 
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Figure 1), the force-based designer can compute the η value 

given by Equation (16). However, this may appear of limited 

use since the displacement reduction factor is typically used 

with the effective period spectral displacement demands and 

not those of the initial period, which is used in force-based 

design. In order to account for this, the designer can calculate 

the effective period, Teff, using the initial period, Ti, as shown 

in Equation (18): 

 11 


μr
ieff TT


 (18) 

 

The elastic spectral acceleration at the initial period and at the 

effective period should then be obtained as shown in Figure 

13. 

 

 

 

At this stage the force-based designer should compute the 

elastic displacements, Δel, expected on the structure (refer 

Figure 2) by using the building initial period, Ti, and structural 

analysis for actions associated with an unreduced design 

response spectrum (i.e. elastic spectral acceleration Sa,el in 

Figure 13). The inelastic displacements can then be predicted 

from the elastic displacements through Equation (19): 

   el
ela

effa
in

rS

S





11,

,




  (19) 

 

Where Sa,el is the elastic spectral acceleration for the initial 

period, Sa,eff is the elastic spectral acceleration for the effective 

period, η is the factor obtained from Equation (16), μ is the 

system ductility demand and r is the post-yield stiffness ratio 

(see Figure 1). As such, the findings of this work can also be 

used to obtain improved inelastic displacement predictions 

within a force-based design context.  

Note that Equation (19) suggests that the relationship between 

the elastic and inelastic displacement demands is likely to 

depend on both the period of the structure, the ductility 

demand and the hysteretic characteristics. By inserting typical 

values for each of the parameters into Equation (19) one can 

show that the equal-displacement rule is likely to be very non-

conservative at times. Consider, for example, a hybrid system 

with an initial period of Ti = 0.8s and λ factor = 1.25, an r = 

0.05, and a system ductility demand of μ = 4.0. The η for this 

system would be 0.7 (Equation (16) or Figure 12) and the 

effective period Teff = 1.5s. With reference to typical response 

spectra in the loadings standard, one can show Sa,eff / Sa,el.= 

0.63. Substituting these values into Equation (19) one finds 

that the inelastic displacement is expected to be 1.5 times the 

elastic displacement demand.  This process has been repeated 

for a range of ductility values and the equivalent h factor has 

then been plotted within Figure 12. It is apparent that inelastic 

displacement estimates obtained using a FBD approach with 

the equal displacement rule, in accordance with New Zealand 

Standards, are non-conservative. In addition, Figure 12 shows 

that there are large discrepancies between inelastic 

displacement estimates made using the FBD and DBD 

approaches. This result indicates that NZ codes may require 

revision to improve inelastic displacement estimates for hybrid 

systems, and the expressions provided in this work may be a 

good alternative to current code recommendations. 

Note that while this section has attempted to improve the 

inelastic displacement estimates that one obtains through 

force-based design, these modifications cannot overcome 

other serious shortcomings with force-based design for certain 

structural systems, identified by Priestley et al. [23]. As such, 

it is recommended that designers use displacement-based 

design or verify their force-based design solutions with 

advanced non-linear analyses. 

CONCLUSIONS 

Hybrid structures can provide an excellent lateral stability 

system in seismic regions as has been shown in previous 

research. In an effort to support the use of hybrid technology, 

this work has reviewed and developed expressions for the 

prediction of inelastic displacements of hybrid systems. 

Initially, the paper identifies the different approaches 

recommended by the New Zealand standards for the 

estimation of inelastic displacement demands on hybrid 

systems. It is shown that equivalent viscous damping 

expressions proposed for displacement-based design appear to 

be fairly conservative, whereas the equal-displacement rule 

incorporated within force-based design procedures can be very 

non-conservative. 

In order to provide a simplified but improved means of 

estimating inelastic displacement demands on hybrid systems 

this work presents the results of a large series of non-linear 

time-history (NLTH) analyses which are used to calibrate a 

general equivalent viscous damping expression for hybrid 

structures characterised with a flag-shaped hysteretic 

behaviour. Processing of the NLTH analysis results showed 

that the hysteretic damping increases when λ decreases, as 

expected, because for low λ values, the energy dissipation 

offered by mild steel bars or dampers is greater. It was also 

shown that the equivalent viscous damping values should be 

lower for higher values of post-yield stiffness factor r. Note, 

however, that the hysteresis parameter λ has a larger influence 

on EVD than the post-yield stiffness factor. As part of the 

investigation procedure it was found that due to the 

accelerogram and spectrum characteristics, a large dispersion 

in the equivalent viscous damping values was obtained with 

coefficients of variation (COV) in the order of 20% to 60%. 

However, when comparing the new expression developed in 

this work for the mean inelastic displacement of hybrid 

systems with other expressions in the literature it was found 

that there is excellent correlation, thereby providing partial 

validation of the new equivalent viscous damping and spectral 

displacement reduction expressions. Finally, in order to render 

the findings of this work beneficial for engineers undertaking 

force-based design, a series of simple transformations are 

presented in order to assist such designers obtain better 

inelastic displacement estimates. 

Spectral Acceleration 

Sa (g) 

Period (s) Ti 

Sa,el 

Sa,eff 

Teff 

Figure 13: Use of elastic spectral acceleration response 

spectrum within a force-based design approach. 
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