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SEISMIC BEHAVIOUR OF UNREINFORCED
MASONRY WALLS

M. J. N. Priestley”

ABSTRACT

The = behaviour of unreinforced masonry walls under seismic loading
is considered, with particular emphasis being given to face-load

response. It 1is shown that

traditional methods of assessing

seismic performance based on elastic stress calculations result in
excessively conservative results when compared with more realistic

methods of assessment. In

particular, an assessment procedure

based on energy considerations is developed at some length, and is

illustrated by a worked sample.

INTRODUCTION

Ultimate strength methods of design and
analysis are now accepted in New Zealand as
necessary for assessing performance of
reinforcid masonry structures under seismic
loading( ) and are required by E?e
provisonal masonry design code( .
However, when assessing the strength of
existing unreinforced buildings, it 1is
still common to use elastic analysis
techniques to specified stress levels. It
will be shown shortly that even for
ncn-seismic applications working stress
methods are inappropriate, and that
ultimate strength methods produce more
consistent results. When considering
seismic loading, these considerations
become even more important. However,
simple ultimate strength calculations still
do not necessarily adequately predict the
behaviour of unreinforced masonry, any more
than they do for reinforced concrete or
masonry structures under seismic loading.
For these latter materials, a further
consideration, that of ductility, is
necessary to reconcile the satisfactory
performance of structures designed for
strength 1levels only a fraction of that
corresponding to elastic response to the
design level earthquake.

For unreinforced masonry structures,
it would initially appear that ductility
considerations are 1inappropriate, since
ductility is normally provided in
structures primarily by inelastic straining
of steel, either in the form of reinforcing
bars or structural steel sections.
However, the concept of ductility is based
on energy considerations, and it can be
shown that if these considerations are
applied to the analysis of unreinforced
masonry, the level of seismic loading
required to cause failure, particularly for
face-loaded walls, tends to greatly exceed
that predicted by simple ultimate strength
calculations.
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This contention is supported by
results from an extensive U.S. research
programme examining the seismic performance
of unreinforced maso rX reported by
Kariotis et al. (3 j. Extensive
dynamic analyses and shake-table testing of
face-loaded walls indicated that the walls
could sustain levels of excitation
acceleration far greater than that
predicted by elastic or ultimate strength
calculations. Similar results have been
obtaineqs)from limited testing of masonry
veneers Kariotis et al. found
that a correlation could be found between
the strength of face-loaded walls and the
spectral velocity of the input
acceleration, which indicates that energy
considerations are important.

The work described in this paper is
an attempt to explain the behaviour
described by Kariotis et al. by the use
of simple fundamental analytical methods
that might be suitable for the design
office.

COMPARISON BETWEEN ELASTIC AND ULTIMATE
STRENGTH METHODS

Elastic design puts undue emphasis on
masonry stress levels. In fact, stress
levels are rather insignificant for
unreinforced masonry, and seismic capacity
is 1likely to be governed not by material
strength, but by stability and energy
considerations, as asserted in the
Introduction to this paper. Even for more
simple lateral load cases, such as wind
loading, elastic design to specified stress
levels 1is 1inappropriate, as shown by the
example of Fig. 1 and 2. In Fig. la and
1b a typical four-storey shear wall 1is
subjected to floor 1loads Pl to P, and
lateral loads Hy to H,, resulting in a
total axial forcCe P and moment M. at
the wall base. Typicafly axial compression
stresses under P will be light, and the
maximum moment permitted by elastic design

will depend on the maximum allowable
tension stress f_, Many codes allow
masonry tension Stresses under elastic

design. The maximum moment for elastic
design will thus be

2 2t

. e W
Me < (T;F + ft) r3 (1)
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Figure 1. Unreinforced masonry wall under wind loading.
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Figure 2. Comparison between elastic and ultimate
moment capacities for unreinforced masonry
wall.



where g and t are the wall length and
thicknesS respectively at the base.

For ultimate strength calculations it
would be normal to check the moment
capacity under reduced gravity load.
Figure lc shows forces involved in vertical
equilibrium wunder an ultimate stability
state defined by

U= 0.9D + 1.3W (2)

which is commonly used for ul?%mege
strength design wind loading ‘-7 "/,
Assuming an average uniform compression
stress of 0.85f& at the toe, and
noting that cracking 1is assumed to have
occurred, the length of the compression
zone, a, is given by

0.9 P

a = ——?E (3)
m

and the ultimate moment capacity by

M. = 0.9 P (—s--) (4)

Figure 2 compares the ratio of ultimate

moment (Eqn . (4)) to design elastic
moment (Eqn. (1)) for a range of axial load
levels P /f'fL t and allowable tension
strength € %tyf'. It will be seen that
the level 8t protection against
overturning afforded by elastic theory is
inconsistent, but is generally very
conservative compared with typical
ultimate strength design. However, for
very low axial load 1levels, clastic
theory may produce unconservative
results, as shown by the curve for

. - . }
Pe/fmﬁwt 0.01 in Fig. 2.

The maximum lateral wind loads that
the wall can sustain are limited by the
ultimate moment capacity given by Egn. 4.
Any attempt to subject the building to
higher wind loads would result in collapse
by overturning. However, for seismic
loading, the development of ultimate moment
capacity, and incipient rocking about a

wall toe does not represent failure. The
seismic lateral forces are related to
ground acceleration and wall stiffness.
Once the wall starts to rock its

incremental stiffness becomes zero, and any
increase 1in ground acceleration will not
increase forces on the wall. Failure can
only occur by overturning if the
acceleration pulse inducing rocking
continues with the same sign for sufficient
length of time to induce collapse. It is
thus clear that collapse will be related to
the seismic energy input. If the ground
acceleration changes direction soon after
rocking commences, the wall stabilises and
rocking ceases. It will be shown 1later
that the amount of energy required for
overturning of typical masonry shear walls
under in-plane loading is too high to
result in failure, though face 1loading
instability may cause collapse.
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Unreinforced walls subjected to face-

load excitation

The response of unreinforced masonry
walls to out-of-plane (face-lcad) seismic
excitation 1s one of the most complex and
ill-understood areas of seismic analysis.
Consider the simplified four-storey masonry
building shown in Fig. 3 subjected to
ground acceleration a perpendicular to
the two front walls, which are thus
subjected to inertia loads in the weak,
face-load direction. Although the base of
cne of these walls 1s subjected to the
ground acceleration, the acceleration input
to the walls at levels 1 to 4 is applied by

the floor slabs, and will have quite
different characteristics to the ground
acceleration. The energy input path is

shown by dashed lines in Fig. 3. Thus the
end walls, acting as in-plane shear walls
respond to the ground acceleration with
response accelerations that depend on
height, wall stiffness and contributory
mass from the floors and face-locaded walls.
The wall response accelerations at a given
height act as 1input accelerations to the
floor diaphragms. If these are rigid, the
displacements and accelerations at all
points along the floor will be equal to the
end wall displacements and accelerations.
However, if the floor 1is flexible, as will
often be the case for existing masonry
buildings, response displacements and
accelerations may well be modified from the
end-wall values. The floor diaphragm
response in turn becomes the input
acceleration for the face-loaded wall. The
ground acceleration has thus been modified
by two actions: that of the end shear walls
and that of the floor diaphragms before
acting as an input acceleration to the
face-loaded wall.

The interactions implied by this
behaviour are described schematically in
Fig. 4. 1In order to fully investigate the
interaction, three-dimensional dynamic
analyses are necessary. However, these are
generally too complex and costly to carry
out for real structures. It should be
noted that the consequence is that input
accelerations to the face-locaded wall, at
the different floor levels will be of
different magnitude, and may be out of
phase, or have significantly different
freqguency composition.

Figure 5 describes the response in
terms of response spectra. Figure 5a shows
the elastic response spectrum for the end

shear wall response to the ground
excitation. For the fundamental period of
transverse response, T, the response
acceleration & can be calculated. It

should be notéd that the elastic response
spectrum forms an upper bound to response,
and a lower response acceleration will be
appropriate if the wall rocks on its base
at less than the elastic response
acceleration.

The response acceleration 3_ refers
to the acceleration at the effectivé centre
of seismic force, h_ ., On the assumption
of a linear first mode shape, the peak
response accelerations at the different
levels can be calculated by linear



194

Figure 3. Seismic load path for unreinforced masonry
building. :
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Figure 4. Seismic Energy Path.



extrapolation. However, it must be
realised that these accelerations are
accelerations relative to ground
acceleration, and must have the ground
acceleration added to represent total
(absolute) acceleration. Thus, though the
mode shape indicates zero acceleration at
ground level, it is clear that the maximum
absolute acceleration at this level is of
course 59, the peak ground acceleration.

At higher 1levels the peak absolute
acceleration 1is less easy to define unless
a full dynamic time-history computer
analysis 1s carried out. It would be
unrealistically conservative to add the
peak ground acceleration to the peak
response accelerations, since the two
accelerations will not commonly occur
simultaneously. In fact, in a resonant
situation, the response and ground
accelerations will be out of phase, and
hence will subtract. Figure 5 illustrates
an average compromise solution for
estimating peak accelerations from a
response spectrum approach. At heights
above the centre of seismic force, h_,
the peak accelerations are given by the
mode shape from the response accelerations.
That 1s, ground accelerations, which are
as likely to decrease as to increase the
absolute acceleration, are ignored. At
heights 1less than h_, the increasing

. . . e . .
significance of the grdund acceleration is
acknowledged by wuse of a linear design
acceleratiog envelope from a at ground
level to a at h_. An altgrnative, and
somewhat more consérvative approach would
be to use a square-root-sum-of-the-square
approach (SRSS). That is

Acceleration
0

o
1)

e o
T Period

{a) Elastic_response spectrum (b) Variation of
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a .= [a .+ a (5)

where a i is the response spectrum modal
acceleratlion at floor i, and a_. 1is the
absolute maximum acceleration at %ioor i.

The floor accelerations in Fig. 5b,
whether calculated by the linear or SRSS
models described above, now become the
input acceleration for floor response.
Since the end-wall response will largely be
comprised of energy at the natural period T
of the transverse reponse, the response of
the flcor to the end wall excitation will
depend on the ratio of the natural floor
period T to the wall period T, and the

equivalen viscous damping, as shown in
Fig. 5c. For very stiff floors, (T. % 0)
the response acceleration will be eqgual to
the excitation acceleration. For very

flexible floors, the response accelerations
will be small, but for values of Tf/T
close to 1.0, resonant response coulé
occur, with high amplification of end wall

response.

Figure 6 1illustrates the resulting
floor excitaton for face loading the wall,
assuming all the floors amplify the end
wall accelerations by an equal amount, and
are in phase. Though this will be no means
always be the case, it represents the worst
case for face load excitation to the wall.
In Fig. 6 it will be seen that the ground
level excitation consists of a wide mix of
frequency components, but at higher levels,
the response consists of a dominant
frequency: that of transverse response of
the building as a whole dominated by the

l —
1.0 /T

{c) Elastic_response_spectra

for end walls to
ground excitation

response
acceleration

for response of 3rd floor
to_end wall excitation

with_height_

Figure 5. Flexible-floor response to ground excitation.
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end wall stiffness. As indicated by Fig.
5b, the 1level of response acceleration
increases with height. Consequently the
top level floor is subjected to the maximum
excitation accelerations. Since this is
combined with the lowest axial load (and
hence lowest stability moment capacity)
failure of the wall is expected initially
at the top 1level. This agrees with many
cases of earthquake damage to unreinforced
masonry buildings.

The final stage 1in the energy path
for face load excitation is represented by
Fig. 7 for one of the storeys of a
multistorey unreinforced masonry building.
Inertial response of the wall in
face-loading 1is excited by the floor
accelerations a. and a below and
above the wall. Althoug the response
acceleration a, =~ will vary with height up
the wall, and will be a maximum at
midheight, and minimum at the floor levels,
it 1is not excessively conservative to
assume &, to be constant with height, as
indicated” 'in Fig. 7a. The magnitude of
a; depends again on the ratio of natural
frequency of wall response to floor
excitation frequency, indicated by the
period ratio T, /T, in Fig. 7b. If
the wall respongs “elastically without
cracking the response acceleration is
comparatively easy to calculate. However,
as the wall cracks, and commences to rock
(as discussed shortly), the natural period
will lengthen, changing the response
amplification of input acceleration. This
effect can be very hard to quantify. Fig.
7b  shows two possibilities. With a
moderate period shift from 1 to 2 in Fig.
7b, coupled with 1light damping, the
face-load response of the wall will be
effected by resonance, and be substantially
higher than the input acceleration. For
larger displacements, the equivalent period
may shift past the resonant range to point
3 ’ resulting in lower response
accelerations than input accelerations.

%+1

However, for the large displacements
hecessary to cause structural collapse, the
response period will be quite long, and
equivalent viscous damping quite high. It
thus seems reasonable to assume that the
response acceleration is the average of the

input accelerations a, \ .
p ; and a; 4

(di*di.) )J

Conditions at
'‘elastic' response

failure and equivalent

Figure 8 illustrates the conditions
representing failure for a face-loaded wall
element such as described in the previous
section. The formation of cracking does
not constitute wall failure, even in an
unreinforced wall. Failure can only occur
when the resultant compression force R in
the compression =zone of the central crack
is displaced outside the line of action of
the applied loads at top and bottom of the
wall.

4
a,
t T P
a .
Q3
i iR
a ) =
a, =
t = F 1
: £
a, =
t —H R
a ) £
dg  H
t w

Figure 6. Face-load response of wall to floor
accelarations.
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Figure 7. Inertia loads from face-load response.
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Figure 8. Conditions for failure of wall under face

loading.

In developing the equations to
predict conditions for wall failure, some
simplifying assumptions are necessary.
First, as mentioned above, it will be
assumed that the response acceleration
ain is constant up the wall height. Hence
the8 lateral inertia force per unit area
will be

W, = m.a, (6)
in in

where m 1is the wall mass per unit area of
wall surface. The second assumption
concerned the degree of end fixity for the

wall at floor levels. It is
conservatively assumed that the ends are
simply supported (i.e. no end moments).

This would be appropriate if the walls at
alternate storey heights were displacing
out-of-phase by 180%, which 1is a real
possibility.

Figure B8a shows the forces acting on
the wall. As well as the inertia load
Winr there is the applied load P
t#Ansmitted by walls and floors above, and
the self weight W of the wall, divided into
two equal parts W/2 centred above and below
the central crack as shown. The resultant
gravity force R acting on the upper half of
the wall has the magnitude

- w
R =P+ (7)
and acts at a distance
hc
Vo = 54| ——— (8)
Rt + D

from the top of the wall.

At ultimate conditions, the
compression zone at the central crack is as
shown in Fig. 8b. The depth of the

compression zone can be approximated as

[V}
]
I
I
|
R

and the resultant force R acts at distance
a/2 from the inside of the wall.

Figure 8c shows the displaced shape
of the upper portion of the wall at
incipient instability, when the 1line of
action of the resultant load ané the
compression force at the central crack are
co-linear. Any further lateral
displacement will result in an unstable
situation, and failure will result. If the
displacement at the wall centre is A,
and the displacement at the centre of load
is A', then conservatively approximating
the displacement profile by a linear
distribution,

2y
_ R
AV = - A (10)
c
and for instability
|.‘t'§
Au - A = 5 (11)

where t is the wall thickness. Combining

Egns. 10 and 11,

hc(t - a)

A = S (12)
u 2(hc - 2 yR)
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Load-deflection relationship for wall

the
wall.

moment of inertia for a unit width
Figure 9b shows the stress

is
of

In order to assess the energy distribution when the crack has propagated
requirements at failure, it is necessary to to the wall centroid. The resisting moment
develop the 1load-deflection relationship is now
for the wall under face loading.

_ Rt _

Prior to cracking, the response is M= 3 7 2 Mcr (18)
linear elastic. Figure 9a shows the stress
conditions at the central section when At cracking, the curvature at the
cracking 1is about to occur, assuming zero central section was
tension strength. Thus, taking moments of £
the resultant force about the wall _ Tcr 19
centroid, wcr = T (19)

RE For conditions represented by Fig.
Moy = 5 (13) 9b, the curvature will be
and 2 fcr
2R b= E t/2 =4 lpcr (20)
fer =€ (14)

It may conservatively be assumed that
where fc is the maximum compresson stress. the i dls?iiceiﬁnt A tlnireases € in
The lat&ral load required to cause M__ will proportion wi & centra curvature.
be given by cr Thus, for the stress conditions of Fig. 9b,

the central displacement will be

2 =
w._h A =44 (21)
M _ _in'c cr
cr 8
Hence (15)

A more accurate estimate for can
8 Mcr be obtained by integrating the curvature
win = 2 distribution, but is probably not warranted
hc when other approximations made ‘in the
analysis are considered. In facF, the

Since w._ =m a,_, the acceleration errors are typically not lgrge until very
required to <Cause cracking can be readily large displacements are obtained.

lculated. The displacement at the centre .
Z? iheawall is givenpby The lateral 1load w, causing the
moment is calculated as shown in Fig. 10.
5 w. _h 4 Taking moments about 0, on the wall centre
A = — 0. C (16) line at the central section,
cr 384 EI
where winhcz
3 R.X = g + R(A - AY) (22)
t
= = 17
I 15 (17)
a
| | - R
{ 'Lfc' L«nﬂTm 2 ' AAMC[ l ;
o 2 i 4
'f —r- _Jh 5"‘LQ (—fq R
? 12 i

L—t_J L__t—J le#**i l.—-_l

(a) At cracking

(b) Half cracked

d

Mer = l;*’Sf/m M =£§l/m=2Mc,

fc, = %B_ fc = %/Rz = 2fcr
= fc - chr

. =3 v E.t/2

{c) % cracked

{(d) Ultimate

M= 581/[11: 25M, M= R(L'ZQ) <3M

12
fc-tZ_/% = Ly f.= 0.85f'm
BRI

Figure 9. Moments and curvatures at centre of face-

loaded wall.



where x is the distance between the line of

action of R and the wall centre line (note
x = t/3 for Fig. 9b). Thus

W, = —Ss R(x - (A - B")) (23)

in 2

h

c
Note that the wall deformation
A reduces the magnitude of the lateral

inertia load required to develop the moment

R.X. That is, a P-A, or in this case an
R-A effect exists. At the 1limit, when
instability is incipient, .= 0. The
response acceleration correépondlng to

win 1s
A, = —S S R(x - (4 - A")) (24)

in 2
m h
c

Using the procedure outlined above,
the complete load-deflection, or
acceleration-deflection curve can be
calculated. Figure 9c shows the
calculations for the situation when the
crack has propagated to 3/4 of the section
depth, and Fig. 94 shows conditions at
ultimate. It should be noted that
calculations will normally indicate that
instability occurs before the wultimate
stress conditions represented by Fig. 94

are reached. It should also be noted that
the wultimate moment in Fig. 9d has a
magnitude M _ £ 3M where is the
cracking momgnt, w1%ﬁ the upper Elmlt being
approached only for very small axial loads
R, since a-0.

Wm=”de

B
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Figure 10. Moment equilibrium for face-loaded wall.

Response Acceleration
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the acceleration-
displacement curve is indicated by the
curved 1line in Fig. 11l. This curve is
elastic non-linear. that is, the wall will
'unload' down the same curve. It 1is
suggested that an estimate of the
equivalent elastic response acceleration
a, can be found by the ‘equal-energy'
prfinciple, equating an area under a linear

The form of

acceleration-displacement line with the
same initial stiffness k as the true wall
acceleration-displacement curve, as shown

in Fig. 1l1. If Al is the area under the
true curve, then
. 2
%
By 73k "M
hence
a, = 2 k Al (25)
is the equivalent elastic response

acceleration to induce failure.

In calculating the response using the
methodology outlined above, some account of
vertical acceleration should be taken,
since these reduce the moments required for
a given acceleration. Conservatively, it
is suggested that a value equal to 2/3 of
the peak lateral ground acceleration should
be adopted. An example of the use of the
methodology for a five-storey unreinforced
masonry building with perimeter walls is
given in an Appendix to this paper. The
results of this example indicate that, as
expected, the top floor is the most
critical, but that equivalent
accelerations to induce failure are
suprisingly high, given the conservative
nature of the assumptions made.

Area 1 = Area 2
de e m“é de = V2kA1
E Area 2 = Qe?
g7
—_
. Areat = A,
Armax T— T
du'“’ l
AT Tl —
ACT Ae Au

Figure 11. “Equal Energy’’ principle for equivalent elastic
stiffness.



200

UNREINFORCED WALLS SUBJECTED TO IN-PLANE
EXCITATION

The methodology developed above for
estimating the level of earthquake
excitation necessary to induce failure of a
face-loaded wall can also be used for walls
under in-plane loading. However, for large
walls without openings, it will generally
be found that no real instability will
occur, and that the walls will simply rock
on their bases. If the uplift
displacements are too large, failure may
occur gradually by shedding bricks from the
tension end of the wall. Many unreinforced
concrete structures subjected to seismic
loading have shown signs of relative
displacements at one or more levels. This
can be attributed to rocking response with
simultaneous accelerations in the face load
direction.

The Dbehaviour of walls with openings

under in-plane loads requires deeper
consideration, however.
Figure 12a illustrates a typical

example of a wall divided into four piers
by openings. Figure 12b and 12c represent
maximum shear forces that can be
transmitted by a typical pier in a rocking
mode and shear failure mode respectively.

For the rocking mode, stability is
provided by the axial 1locad P. Taking
moments about the toe reaction P, and
ignoring the pier self weight as being
insignificant,

P.(Qp - a) = V.ho
P(JLp - a)
il.e. v = — % (26)
o
h a = b
where ©0.85 fr.t
m
is the compression contact area at

ultimate, and t is the wall thickness.

Very large displacements (A =2%_ - a)
will be necessary to induce instagility
failure under the rocking mode . The

analysis developed for face-loaded walls
can be used to estimate maximum equivalent
elastic response.

The shear force indicated by Egn. 26
can only develop if shear failure of the
pier does not occur at a lower shear force.
From Fig. 12c, the shear failure load will
be

Vo= T fpet + uP (27)

where ¢ is the initial shear stress for
zero axial load, and u 1is a friction
coefficient. Testing of unreinforced
masonry walls suggests appropriate values
in the range

1A
=)
N

0.1 1.2MPa
(28)

0.5 1.2

in
=
N

AR e R
v, AV Vs AV

w-a)

(b) Rocking_of pier

v

-} Shear crack
k%:i\ Vo = To Lot + P
Ve

(c) Shear failure of pier

Figure 12. Failure of unreinforced wall with piers.

Equation 27 assumes that when
incipient shear cracking develops, the
shear stress is effectively uniformly
distributed across the section, rather than
distributed parabolically. In such
circumstances, and considering the repeated

load reversals expected under seismic
loading, it 1is advisable to put t_ = 0.
Hence °

V = uP (29)

Equations 26, 27 and 29 can be
combined to find the critical aspect ratio
for piers, to ensure shear failure does not
occur. Thus

P P

PP > = (L - e
h, ''p T 0.85 £t

)

let f =

be the average axial compression stress on
the pier. Then



2 £,
v or - g e
o m

or (30)
2—0 > - ng"f"')
p H ) m

In the absence of information relating to
the coefficient of friction for the wall
being assessed it is recommended that
u = 0.5 be adopted. Thus

h £
> 20 - gogsgy) (3L

P m
is the requirement to avoid shear failure.
Consequently piers with aspect ratios
greater than 2.0 should not be subject to
shear failure. For piers with heavy axial
load, lower aspect ratios may be
satisfactory, since these rock at a
relatively lower shear.

It is recommended that the criterion
of acceptable performance for piers be that
shear failure cannot occur. Provided
rocking limits the shear capacity of all
piers at a given level, simple addition of
the pier shear forces gives the total
storey shear.

It should be noted that for

face-loading, the influence of wall
openings is to increase the axial load on
the piers, thus making them more stable.

This aspect can easily be incorporated in
the methodology developed above.

CONCLUSIONS

Examination of working stress and
ultinmate strength methods for assessing
unreinforced masonry strength under seismic
loading indicated that neither method could
give an adequate representation of the
dynamic response. An ultimate load
appraisal incorporating energy
consideration based on the calculated load-
deflection curves appears to have some
merits for assessment of face-load response

of masonry walls. in developing the
methodology for analysis a number of
conservative assumptions were made. The

significance of these assumptions should be
tested by dynamic analyses and testing, and
where possible, by back-calibrating against
results from earthquakes.
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The analyses produced the not
unexpected result that upper floors of
masonry buildings are likely to be more
suspect than lower floors, since
accelerations will be higher, and
stabilising moments provided by gravity
loads will be less. The analyses assumed
that the walls are properly connected to
the floor (and roof) system at all levels.
Generally this will not be the case. Fig.
13 shows a detail common in wunreinforced
masonry walls in New Zealand, where the
floor beam rests on the wall in a small
'pocket’'. Connection between wall and
floor relies on friction. Because of the
high accelerations possible, this is
inadequate, and positive connecticn,
preferably using anchor bolts connected to
the floor beam and anchored against a
bearing plate on the outside of the wall
should be used. Examination of the
methodology developed above for face-load
response immediately shows the disasterous
conseguences of loosing support by
connection to the roof or to an
intermediate floor.

No attempt has been made 1in this
paper to discuss methods for upgrading the
seismic capacity of walls where face-load
or in-plane shear capacity is shown to be
inadequate. These have been adequately
covered in recent issues of the Bulletin.

Finally it should be noted that
comments presented in this paper assume
good quality masonry properties, and would
obviously not apply to walls with decayed
mortar and loose Dbricks. For other
structures, made from competent materials,
the methodology would indicate that our
assessment of the capacity of existing
unreinforced masonry buildings may have
been somewhat Draconian in the past, and
that less conservative assessments and
requirements for strengthening may often be
appropriate. It is hoped that this paper
may stimulate discussion of some of these
aspects.
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Figure 13. Anchoring floor beams to walls.
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APPENDIX

Example of Unreinforced Masonry Building
Response

The five-storey unreinforced masonry
building in Fig. l4a has perimeter walls
220 mm thick. The 20 m 1long end walls
support masses of 40 tonnes per floor
(including self weight) and 20 tonnes at
roof level. Use the design elastic
response spectrum of Fig. l4b to estimate
the natural 1in-plane period of the end
walls, and hence the wall response
accelerations. Assuming that flexible
floors amplify the end wall accelerations
by a factor of 2.0, calculate at what
proportion of the design loading failure of
a longitudinal face-loaded wall (see Fig.
l4a) would occur at levels 5, 3 and 1,
assuming load applied to the wall by the
roof 1is 10 kN/m, and load applied by each
floor is 14 kN/m (self weight must be
added) .

Data:

Elastic Modulus:
E = 1.0 GPa

Shear Modulus:

9]
I

0.4 GPa

1900 kg/m>

Brick Density

Masonry comp. strength:

f' = 5 MPa
m
Foundation rotational stiffness:
kg = 8.5 x 10° Nm/radian

Vertical accelerations:
Assume 0.2 g in conjunction with
horizontal acceleration (= 2/3 of
peak ground horizontal acceleration).

(xg)

20t Sm
5
L0t f —E
L0t —
3
40t E—
2
| Sé@g,, L0t 1 F
7 ace
O// loaded
wall
20m
M Note : Wall thickness, t=220mm
¢ E =1.0GPa
f'm = 5.0MPa

(a) Structural configuration

os!

0.4

0.2

-

1 1 Il | 1
04 06 08 10
T (sec)
(b) Design level elastic response spectrum

1 J B —

1

00 0.2

for end wall

Figure 14. Design example for 5 storey masonry building.

In-plane response of end wall

Moment of inertia:

3
_0.22 x 20°_ 4
1= 22X 20 - 146.7 m

Natural period: For the equivalent 1°F

model
m
T=27T-}E-e—
e
/ 180 x 103
= 27 ———————5 sec.
1.76 x 10
i.e. T = 0.635 sec.




From Fig. 14b, the response
acceleration at the centre of mass = 0.44 g
where g = acceleration due to gravity. 5 0'659 L3Og
R T L L] L} 1 T 1]
Moment to cause in-place rockin ]
P g a Shﬁf
Check stability under 0.8D + E g wa
(D = dead load, E = earthgquake load). =z 4t 1
Restoring moment: 3 S 0.44
w a o
M_ = 0.8(180 x 9.8(5— ~ %)) kNm ™ i i
r 2 "2 b3 Face loaded
JLw a wall. .
= 1.41(5~ - 3) MNm Accelerations
2+ / amplified by
.. 0.8 P he=17m / floor response
0.85 £t /
1 - -
_ 0.8 x 180 x 9.8 /
"~ 0.85 x 5000 x 0.22 /
= 1.51 m 0 L ) 1 L . L ! 1 L L ) L
o 1.51 0 02 04 06 08 10 12 14
My = L4lgm - 5 Acceleration (xg)
= 13.1 MNm Figure 15. Response accelerations for example building.
Overturning moment
At 0.44 g response:
Mo = 180 x 0.44 x 9.8 x 17 Stiffness of Wall
= 13.20 MNm The wall stiffness depends on the

flexural, shear and foundation flexibility,
and can be expressed as
Thus the wall starts to rock at

13.1 x 100 = 99% of the design earthquake ke = 3 . 2
13.2 = 29% g a . [he l.2n_  h, ]
_— +
Design level floor accelerations 3EI AG ke
_ 1
Area: 2 173 1.2 x 17 172
A=0.22%x 20 = 4.4m 3 N 5 4 5
3 x 107 x 146.7 4.4 x 0.4 x 10 8.5 x 10

Equivalent Single Degree of Freedom Model

A simple simulation of the transverse ie. k = 1.76 x 107 N/m
response of the shear walls can be provided e

by a single mass m_ at equivalent height

h given by

e
5 Figure 15 shows the design-level shear
m, = z my wall accelerations at different heights,
1 and the 1input accelerations for -the
face-loaded wall, which are 2.0 times the
= 4 x 40 + 20 shear wall accelerations, except at ground
floor 1level, where no amplification will
i.e. me = 180 tonnes occur.
and 5th storey face-load response
5 m, hi2 Referring to Fig. 8,
he =1 m, B P =0.8x 10 kN = 8kN/m, and
20 x 252 . 40(202 + l52 + 102 + 52) . W=10.8%x 1.9 x 9.8 x 0.22 x 5 kN
20 x 25 + 40(20 + 15 + 10 + 5) = 16.4 kN/m
i.e. R =8+ 8.2 =16.2 kN/m
he =17.0m Note that the 0.8 factor is to allow

for vertical acceleration of 0.2 g.
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From Egn. 8:

Y = 72 (1602

at cracking:

_ 2 x 16.2 _
fCI = -——0—-—-2-2— = 0.147 MPa
Egn. 13:
M _16.2 x 0.22 K Nm
cr 6
= 0.595 kNm
Egn. 15: Equivalent lateral load
w _ 8 x 0.595
in 25
= 190 N/m
Egn. 16: Central displacement
A - _ 5% 190 x s*
= s m
9 0.22
384 x 107 x )
= 1.74 mm
Egn. 19: Curvature
v = __igLiiz——-= 0.662 x 10_3/m
€r 107 x 0.22

Now unit weight of wall
= 1.9 x 9.8 x 2.2 = 4.10 kN/m2

Thus from Egns. 10 and 24 the true

acceleration for a displacement of 1.74 mm
will be

3 = 8 0.22 0.629

%in - 7.0 x 25 % 16'2t'€_— -1 - =55)0.00174

i

0.0447 g

Thus the top level wall will crack at
the very 1low response acceleration of

0.0447 g.

For a moment M = 2 M_, (e.g. Fig. 9Db)
we have U= 4y = 2.64 x 1073 /m
and A=4x1.74 mm

6.96 mm

The corresponding acceleration will
be
8 0.22

in T %.10 x 25 3

0.0861 g

X 16.21———— - (1 - 0.25)0.00696%

For a moment M = 2.5 M (e.g. Fig. 9c)

cr
- _ -3
Y 16 wcr = 10.56 x 10" " /m
A = 16 Acr = 27.84 mm
ain = 1.26(0.0917 - 0.75 x 0.02784) g

0.0892 g

For a moment M = 2.667 M (E_ =6 £_ )
cr c cr

-3
= = 23
U] 36 wcr 23.8 x 10" 7 /m
A = 36 A = 62.6 mm
cr
sin = 1.26(0.0978 - 0.75 x 0.0626) g
= 0.0644 g
The moment-curvature and

acceleration-displacement curves for
level 5 are included in Figs. 16 and 17
respectively. These figures also include
curves for 1level 3 and level 1 based on
similar calculations to the above, but with
axial load levels of

Level 3: R = 0.8 x 89.3

71.4 kN/m

Level 1: R = 0.8 x 158.3 126.6 kN/m

The increased 1load greatly improves
the moment-curvature behaviour, but because
of the greater P-A effect on central
moments, the acceleration:displacement
curves are not enhanced to the same degree.

The areas under the three
acceleration: displacement curves can be
measured to give

Level 5: A5

3 14.8 (mm x g units)

7.25 (mm X g units)

Level 3: A

Level 1: Al = 14.8

The initial stiffness of all three
curves is the same, at

(mm X g units)

k = 0.0259 g/mm

Thus the equivalent elastic response
acceleration to induce failure <can be
calculated using Egn. 25.

JZ kA5 g

J2 x 0.0259 x 7.25 g

]

Level 5: a
e

]

0.61 g

Level 3 and 1:

a, J2 x 0.0259 x 14.8 g

]

0.875 g
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These can be compared with the

response accelerations corresponding to the

design level earthquake,

given in Fig. 15.

For level 5, the average acceleration is

_1.04 + 1.30
=Tz

1.17 g

Hence failure of the Level 5 wall is

expected at

"0.61

1.17 52%

x 100% =

of the design level earthquake.

" \

eve
i Level 3
L

Level 5
1 i | 1 1 | i 1 1 1 1 | | 1 )_
0 4 8 12 16 20 24 28
Curvature { x10%/m)

Figure 16. Moment-curvature relationships for face-

loading at different levels for example building.
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Design level accelerations for levels
3 and 1 are 0.80 g and 0.49 g respectively.

Consequently failure at three levels will
not occur until 109 percent and 179 percent
respectively of the design level
earthquake. However, premature failure of
the 1level 5 wall could induce failures at
lower 1levels, due to reduced stability
moments, and possible loss of floor
support.

As expected, these calculations show
the top 1level of the wall to be most
vulnerable to damage from face-load
accelerations. Although the calculations
can only be considered approximate, the
general conclusions are valid, and the
methodology sound. In particular the
analyses indicate the sensitivity of the
results to simultaneous vertical
acceleration. For 1levels of vertical
acceleration higher than the 0.2 g assumed
in this example, the failure lateral
accelerations will Dbe correspondingly
lower.

0.9 |-Levels 3&1
-

0.8 |

0.7

Initial elastic
stiffness

o
o)

o
n

Response Acceleration (xg)

0.2

041
Level 5

80
Central Displacement (mm)

100 120

Figure 17. Equivalent elastic response accelerations at
different levels for example building.
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