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ABSTRACT 

The ' behaviour of unreinforced masonry walls under seismic loading 
is considered, with particular emphasis being given to face-load 
response. It is shown that traditional methods of assessing 
seismic performance based on elastic stress calculations result in 
excessively conservative results when compared with more realistic 
methods of assessment. In particular, an assessment procedure 
based on energy cons iderations is developed at some length, and is 
illustrated by a worked sample. 

INTRODUCTION 

Ultimate strength methods of design and 
analysis are now accepted in New Zealand as 
necessary for assessing performance of 
reinforced masonry structures under seismic 
loading ^ * and are required by ^ e ( 1 ) 

provisonal masonry design code 1 

However, when assessing the strength of 
existing unreinforced buildings, it is 
still common to use elastic analys is 
techniques to specified stress levels . 11 
will be shown shortly that even for 
ncn-seismic applications working stress 
methods are inappropriate, and that 
ultimate strength methods produce more 
consistent results. When considering 
seismic loading, these considerations 
become even more important. However, 
simple ultimate strength calculations still 
do not necessarily adequately predict the 
behaviour of unreinforced masonry, any more 
than they do for reinforced concrete or 
masonry structures under seismic loading. 
For these latter materials, a further 
consideration, that of ductility, is 
necessary to reconcile the satisfactory 
performance of structures designed for 
strength levels only a fraction of that 
corresponding to elastic response to the 
design level earthquake. 

For unreinforced masonry structures, 
it would initially appear that ductility 
considerations are inappropriate, since 
ductility is normally provided in 
structures primarily by inelastic straining 
of steel f either in the form of reinforcing 
bars or structural steel sections. 
However, the concept of ductility is based 
on energy considerations, and it can be 
shown that if these considerations are 
applied to the analysis of unreinforced 
masonry, the level of seismic loading 
required to cause failure, particularly for 
face-loaded walls, tends to greatly exceed 
that predicted by simple ultimate strength 
calculations. 
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This contention is supported by 
results from an extensive U.S. research 
programme examining the seismic performance 
of unreinforced masonry. reported by 
Kariotis et al. ( 3 . Extensive 
dynamic analyses and shake-table testing of 
face-loaded walls indicated that the walls 
could sustain levels of excitation 
acceleration far greater than that 
predicted by elastic or ultimate strength 
calculations. Similar results have been 
obtained from limited testing of masonry 
veneers ( b ) . Kariotis et al. found 
that a correlation could be found between 
the strength of face-loaded walls and the 
spectral velocity of the input 
acceleration, which indicates that energy 
considerations are important. 

The work described in this paper is 
an attempt to explain the behaviour 
described by Kariotis et al. by the use 
of simple fundamental analytical methods 
that might be suitable for the design 
office. 

COMPARISON BETWEEN ELASTIC AND ULTIMATE 
STRENGTH METHODS 

Elastic design puts undue emphasis on 
masonry stress levels. In fact, stress 
levels are rather insignificant for 
unreinforced masonry, and seismic capacity 
is likely to be governed not by material 
strength, but by stability and energy 
considerations, as asserted in the 
Introduction to this paper. Even for more 
simple lateral load cases, such as wind 
loading, elastic design to specified stress 
levels is inappropriate, as shown by the 
example of Fig. 1 and 2. In Fig. la and 
lb a typical four-storey shear wall is 
subjected to floor loads to P^ and 
lateral loads H x to H 4 , resulting in a 
total axial force P and moment M e at 
the wall base. Typically axial compression 
stresses under P g will be light, and the 
maximum moment permitted by elastic design 
will depend on the maximum allowable 
tension stress f . Many codes allow 
masonry tension stresses under elastic 
design. The maximum moment for elastic 
design will thus be 

1 2 t 
w (1) 

w 
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Figure 1. Unreinforced masonry wall under wind loading. 
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Figure 2. Comparison between elastic and ultimate 
moment capacities for unreinforced masonry 
wall. 
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where £^ and t are the wall length and 
thickness respectively at the base. 

For ultimate strength calculations it 
would be normal to check the moment 
capacity under reduced gravity load. 
Figure lc shows forces involved in vertical 
equilibrium under an ultimate stability 
state defined by 

U - = 0.9D + 1.3W (2) 

which is commonly used for ultimate 
strength design wind loading^ f ' . 
Assuming an average uniform compress ion 
stress of 0.85f^ at the toe, and 
noting that cracking is assumed to have 
occurred, the length of the compression 
zone, a, is given by 

0.9 P 
a = 0785-f^t < 3 ) 

m 
and the ultimate moment capacity by 

M u = 0.9 P e ( - ^ - ( 4 ) 

Figure 2 compares the ratio of ultimate 
moment (Eqn. (4)) to design elastic 
moment (Eqn. (1)) for a range of axial load 
levels P /f' I t and allowable tension 
s trength e ¥ ^. It will be seen that 
the level of protection against 
overturning afforded by elastic theory is 
inconsistent, but is generally very 
conservative compared with typical 
ultimate strength design. However, for 
very low axial load levels, elastic 
theory may produce unconservative 
results, as shown by the curve for 
P / f i t = 0.01 in Fig. 2. 
e / m w ^ 

The maximum lateral wind loads that 
the wall can sustain are limited by the 
ultimate moment capacity given by Eqn. 4. 
Any attempt to subject the building to 
higher wind loads would result in collapse 
by overturning. However, for seismic 
loading, the development of ultimate moment 
capacity, and incipient rocking about a 
wall toe does not represent failure. The 
seismic lateral forces are related to 
ground acceleration and wall stiffness. 
Once the wall starts to rock its 
incremental stiffness becomes zero, and any 
increase in ground acceleration will not 
increase forces on the wall. Failure can 
only occur by overturning if the 
acceleration pulse inducing rocking 
continues with the same sign for sufficient 
length of time to induce collapse. It is 
thus clear that collapse will be related to 
the seismic energy input. If the ground 
acceleration changes direction soon after 
rocking commences, the wall stabilises and 
rocking ceases. It will be shown later 
that the amount of energy required for 
overturning of typical masonry shear walls 
under in-plane loading is too high to 
result in failure, though face loading 
instability may cause collapse. 

Unreinforced walls subj ected to face-
load excitation 

The response of unreinforced masonry 
walls to out-of-plane (face-load) se ismic 
excitation is one of the most complex and 
ill-understood areas of seismic analysis. 
Consider the simplified four-storey masonry 
building shown in Fig. 3 subj ected to 
ground acceleration a perpendicular to 
the two front walls, which are thus 
subj ected to inertia loads in the weak, 
face-load direction. Although the base of 
one of these walls is subj ected to the 
ground acceleration, the acceleration input 
to the walls at levels 1 to 4 is applied by 
the floor slabs, and will have quite 
different characteristics to the ground 
acceleration. The energy input path is 
shown by dashed lines in Fig. 3. Thus the 
end walls, acting as in-plane shear walls 
respond to the ground acceleration with 
response accelerations that depend on 
height, wall stiffness and contributory 
mass from the floors and face-loaded walls. 
The wall response accelerations at a given 
height act as input accelerations to the 
floor diaphragms . If these are rigid, the 
displacements and accelerations at all 
points along the floor will be equa1 to the 
end wall displacements and accelerations. 
However , if the floor is flexible, as will 
often be the case for existing masonry 
buildings, response d isplacements and 
accelerations may well be modified from the 
end-wall values. The floor diaphragm 
response in turn becomes the input 
acceleration for the face-loaded wall. The 
ground acceleration has thus been modified 
by two actions: that of the end shear walls 
and that of the floor diaphragms before 
acting as an input acceleration to the 
face-loaded wall. 

The interactions implied by this 
behaviour are described schematically in 
Fig. 4. In order to fully investigate the 
interaction, three-dimens ional dynamic 
analyses are necessary. However, these are 
generally too complex and costly to carry 
out for real structures. It should be 
noted that the consequence is that input 
accelerations to the face-loaded wall, at 
the different floor levels will be of 
different magnitude, and may be out of 
phase, or have significantly different 
frequency composition. 

Figure 5 describes the response in 
terms of response spectra. Figure 5a shows 
the elastic response spectrum for the end 
shear wall response to the ground 
excitation. For the fundamental period of 
transverse response, T, the response 
acceleration a"r can be calculated. It 
should be noted that the elastic response 
spectrum forms an upper bound to response, 
and a lower response acceleration will be 
appropriate if the wall rocks on its base 
at less than the elastic response 
acceleration. 

The response acceleration a refers 
to the acceleration at the effective centre 
of seismic force, h^. On the assumption 
of a linear first"mode shape, the peak 
response accelerations at the different 
levels can be calculated by linear 
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extrapolation. However, it must be 
realised that these accelerations are 
accelerations relative to ground 
acceleration, and must have the ground 
acceleration added to represent total 
(absolute) acceleration. Thus , though the 
mode shape indicates zero acceleration at 
ground level, it is clear that the maximum 
absolute acceleration at this level is of 
course a g , the peak ground acceleration. 

At higher levels the peak absolute 
acceleration is less easy to define unless 
a full dynamic time-history computer 
analysis is carried out. It would be 
unrealistically conservative to add the 
peak ground acceleration to the peak 
response accelerations, since the two 
accelerations will not commonly occur 
simultaneously. In fact, in a resonant 
situation, the response and ground 
accelerations will be out of phase, and 
hence will subtract. Figure 5 illustrates 
an average compromise solution for 
estimating peak accelerations from a 
response spectrum approach. At heights 
above the centre of seismic force, h , 
the peak accelerations are given by tie 
mode shape from the response accelerations . 
That is, ground accelerations, which are 
as likely to decrease as to increase the 
absolute acceleration, are ignored. At 
heights less than h^, the increasing 
significance of the ground acceleration is 
acknowledged by use of a linear design 
acceleration envelope from a at ground 
level to a^ at h e . An altlrnative, and 
somewhat more conservative approach would 
be to use a square-root-sum-of-the-square 
approach (SRSS). That is 

/•• 2 •• 2 a . = / a . + a 5) ai y ri g 

where a ^ is the response spectrum modal 
acceleration at floor i, and a . is the 
absolute maximum acceleration at floor i. 

The floor accelerations in Fig. 5b, 
whether calculated by the linear or SRSS 
models described above, now become the 
input acceleration for floor response. 
Since the end-wall response will largely be 
comprised of energy at the natural period T 
of the transverse reponse, the response of 
the floor to the end wall excitation will 
depend on the ratio of the natural floor 
period T f to the wall period T, and the 
equivalent viscous damping, as shown in 
Fig, 5 c For very stiff floors, (T f •= 0) 
the response acceleration will be equal to 
the excitation acceleration. For very 
flexible floors, the response accelerations 
will be small, but for values of T ^ / T 
close to 1.0, resonant response coulS 
occur, with high amplification of end wall 
response. 

Figure 6 illustrates the resulting 
floor excitaton for face loading the wall, 
assuming all the floors amplify the end 
wall accelerations by an equal amount, and 
are in phase. Though this will be no means 
always be the case, it represents the worst 
case for face load excitation to the wall. 
In Fig. 6 it will be seen that the ground 
level excitation consists of a wide mix of 
frequency components, but at higher levels, 
the response consists of a dominant 
frequency: that of transverse response of 
the building as a whole dominated by the 

Figure 5. Flexible-floor response to ground excitation. 
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end wall stiffness. As 
5b, the level of resp 
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cases of earthquake dama 
masonry buildings. 

indicated by Fig. 
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ge to unreinforced 
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The final stage in the energy path 
for face load excitation is represented by 
Fig. 7 for one of the storeys of a 
multistorey unreinforced masonry building. 
Inertial response of the wall in 
face-loading is excited by the floor 
accelerations a\ and a±+i below and 
above the wall. Althougn the response 
acceleration *a i n will vary with height up 
the wall, and will be a maximum at 
midheight, and minimum at the floor levels, 
it is not excessively conservative to 
assume a\ to be constant with height, as 
indicated in Fig. 7a. The magnitude of 
a i n depends again on the ratio of natural 
frequency of wall response to floor 
excitation frequency, indicated by the 
period ratio T

i n / T f , in Fig. 7b. If 
the wall responds elastically without 
cracking the response acceleration is 
comparatively easy to calculate. However, 
as the wall cracks, and commences to rock 
(as discussed shortly) , the natural period 
will lengthen, changing the response 
amplification of input acceleration. This 
effect can be very hard to quantify. Fig. 
7b shows two possibilities. With a 
moderate period shift from 1 to 2 in Fig. 
7b, coupled with light damping, the 
face-load response of the wall will be 
effected by resonance, and be substantially 
higher than the input acceleration. For 
larger displacements, the equivalent period 
may shift past the resonant range to point 
3 p resulting in lower response 
accelerations than input accelerations. 

However, for the large displacements 
necessary to cause structural collapse, the 
response period will be quite long, and 
equivalent viscous damping quite high. It 
thus seems reasonable to assume that the 
response acceleration is the average of the 
input accelerations a^ and 
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Wall Centre failure 

Figure 8. Conditions for failure of wall under face 
loading. 

In developing the equations to 
predict conditions for wall failure, some 
s implifying assumptions are necessary. 
First, as mentioned above, it will be 
assumed that the response acceleration 
a. is constant up the wall height. Hence 
tne lateral inertia force per unit area 
will be 

(6) 

At ultima te conditions, the 
compression zone at the central crack is as 
shown in Fig. 8b. The depth of the 
compression zone can be approximated as; 

0.85 f« m 

and the resultant force R acts at distance 
a/2 from the inside of the wall. 

where m is the wall mass per unit area of 
wall surface. The second assumption 
concerned the degree of end fixity for the 
wall at floor levels. It is 
conservatively assumed that the ends are 
simply supported (i.e. no end moments). 
This would be appropriate if the walls at 
alternate storey heights were displacing 
out-of-phase by 180 , which is a real 
possibility. 

Figure 8a shows the forces acting on 
the wall. As well as the inertia load 
w ± n ? there is the applied load P 
transmitted by walls and floors above, and 
the self weight W of the wall, divided into 
two equal parts W/2 centred above and below 
the central crack as shown. The resultant 
gravity force R acting on the upper half of 
the wall has the magnitude 

R P + 

and acts at a distance 

2(P + |) 

(7) 

(8) 

Figure 8c shows the displaced shape 
of the upper portion of the wall at 
incipient instability, when the line of 
action of the resultant load anq| the 
compression force at the central crack are 
co-linear. Any further lateral 
displacement will result in an unstable 
situation, and failure will result. If the 
displacement at the wall centre is A u , 
and the displacement at the centre of load 
is A' , then conservatively approximating 
the displacement profile 
distribution, 

2 y. 

by 

and for instability 

A - A 1 

u 
t - a 

where t is the wall thickness. 
Eqns. 10 and 11, 

h c(t - a) 

from the top of the wall. 
u - 2(h c - 2 y R) 

linear 

(10) 

( I D 

Combining 

(12) 
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Load-deflection relationship for wall 

In order to assess the energy-
requirements at failure, it is necessary to 
develop the load-deflection relationship 
for the wall under face loading. 

Prior to cracking, the response is 
linear elastic. Figure 9a shows the stress 
conditions at the central section when 
cracking is about to occur, assuming zero 
tension strength. Thus, taking moments of 
the resultant force about the wall 
centroid, 

is the moment of inertia for a unit width 
of wall. Figure 9b shows the stress 
distribution when the crack has propagated 
to the wall centroid, The resisting moment 
is now 

R t O M = 2 M 3 cr (18) 

At cracking, the curvature at the 
central section was 

cr 
Et (19) 

Rt 
6 

For conditions represented by Fig. 
(13) 9b , the curvature will be 

and 

2R 
t (14) 

where f is the maximum compresson stress, 
The lateral load required to cause M will 
be given by 

2 f 
E t/2 4 i) 

T r 
(20) 

It may conservatively be assumed that 
the displacement A increases in 
proportion with the central curvature. 
Thus, for the stress conditions of Fig. 9b, 
the central displacement will be 

w. h in c 4 A (21) 

Hence (15) 
8 M 

Since w. = m a. , the acceleration 
required to cause cracking can be readily 
calculated. The displacement at the centre 
of the wall is given by 

4 
(16) 

5 w. h in c 
384 EI 

A more accurate estimate for can 
be obtained by integrating the curvature 
distribution, but is probably not warranted 
when other approximations made -in the 
analysis are considered. In fact, the 
errors are typically not large until very 
large displacements are obtained. 

The lateral load w i n causing the 
moment is calculated as shown in Fig. 10. 
Taking moments about 0 , on the wall centre 
line at the central section, 

where 

I = 12 (17) 
R.x 

w. h in c + R(A - A ! (22) 

(a) At cracking (b) Half cracked (c) X c racked (d) Ultimate 
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M = B i / m = 2M C f M=§Rt/m = 2.5M c r M = R ( l ^ ) <3M C 

f - 2 R - 2f 
t c "172 c r 

E T 
4> = . 2fc 

E.t /2 

f c= 0.85 f'm 

Figure 9. Moments and curvatures at centre of face-
loaded wall. 
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where x is the distance between the line of 
action of R and the wall centre line (note 
x = t/3 for Fig. 9b). Thus 

R(x (A - A • ) ) (23) 

Note that the wall deformation 
A reduces the magnitude of the lateral 
inertia load required to develop the moment 
R.x. That is , a P-A, or in this case an 
R-A effect exists. At the limit , when 
instability is incipient, w . n = 0. The 
response acceleration corresponding to 

is w. in 

R(x - (A A ! ) ) (24) 
m h 

The form of the acceleration-
displacement curve is indicated by the 
curved line in Fig. 11. This curve is 
elastic non-linear. that is, the wall will 
'unload' down the same curve. It is 
suggested that an estimate of the 
equivalent elastic response acceleration 
a can be found by the 1 equal-energy' 
principle, equating an area under a linear 
acceleration-displacement line with the 
same initial stiffness k as the true wall 
acceleration-displacement curve, as shown 
in Fig. 11. If 
true curve, then 

A^ is the area under the 

e 
2 k 

hence 

Using the procedure outlined above, 
the complete load-deflection, or 
acceleration-deflection curve can be 
calculated. Figure 9c shows the 
calculations for the situation when the 
crack has propagated to 3/4 of the section 
depth, and Fig. 9d shows conditions at 
ultimate. It should be 
calculations will normally 
instability occurs before 
stress conditions represented 
are reached. It should also be noted that 
the ultimate moment in Fig. 9d has a 
magnitude M £ 3M , where M is the 
cracking moment, witn the upper limit being 
approached only for very small axial loads 
R, since a^O. 

noted that 
indicate that 
the ultimate 
by Fig. 9d 

2 
R 

— W i ^ m o j , 

m1 A T" 

1 

Moments at 0 :-

R x = ^ £ + R ( A - A ' ) 

- / 2 k A, 
is the equivalent elastic 
acceleration to induce failure. 

(25) 

response 

- f ^ R ( x - I A - A ' ) ) in- m ~ m h 2 

Figure 10. Moment equilibrium for face-loaded wall. 

In calculating the response using the 
methodology outlined above, some account of 
vertical acceleration should be taken, 
since these reduce the moments required for 
a given acceleration. Conservatively, it 
is suggested that a value equal to 2/3 of 
the peak lateral ground acceleration should 
be adopted. An example of the use of the 
methodology for a five-storey unreinforced 
masonry building with perimeter walls is 
given in an Appendix to this paper. The 
results of this example indicate that, as 
expected , the top floor is the most 
critical, but that equivalent 
accelerations to induce failure are 
suprisingly high, given the conservative 
nature of the assumptions made. 

Area 1 = Area 2 
b e = V2kAi 

Area 2 = 9s-
2k 

Figure 11. "Equal Energy" principle for equivalent elastic 
stiffness. 
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UNREINFORCED WALLS SUBJECTED TO IN-PLANE 
EXCITATION 

The methodology developed above for 
estimating the level of earthquake 
excitation necessary to induce failure of a 
face-loaded wall can also be used for walls 
under in-plane loading. However, for large 
walls without openings, it will generally 
be found that no real instability will 
occur, and that the walls will simply rock 
on their bases. If the uplift 
displacements are too large, failure may 
occur gradually by shedding bricks from the 
tension end of the wall• Many unreinforced 
concrete structures subjected to seismic 
loading have shown signs of relative 
displacements at one or more levels. This 
can be attributed to rocking response with 
simultaneous accelerations in the face load 
direction. 

The behaviour of walls with openings 
under in-plane loads requires deeper 
consideration, however. 

Figure 12a illustrates a typical 
example of a wall divided into four piers 
by openings. Figure 12b and 12c represent 
maximum shear forces that can be 
transmitted by a typical pier in a rocking 
mode and shear failure mode respectively. 

For the rocking mode, stability is 
provided by the axial load P. Taking 
moments about the toe reaction P, and 
ignoring the pier self weight as being 
insignificant, 

P. (i - a) = V.h 
p o 

V = 
P U - a) P 

© 
Vi 

© 

V 2 

J 

_ £ Y 3 _ L Y < 

( D © 

V 3 I | V 4 

T T 

(a) Wall with openings 

Pj 

V - P t tw-a ) 
»max - . 

^ a / 2 

[ b) Rocking of pier 

X V 

Shear crack 

Vm a« = Xo -tpt + JlP 

(26) 

V ! P 
(c) Shear failure of pier 

where 0 .85 f 1 .t 
m 

Figure 12. Failure of unreinforced wall with piers. 

is the compression contact area 
ultimate, and t is the wall thickness. 

at 

Very large displacements (A = I - a) 
will be necessary to induce instaBility 
failure under the rocking mode. The 
analysis developed for face-loaded walls 
can be used to estimate maximum equivalent 
elastic response. 

The shear force indicated by Eqn. 26 
can only develop if shear failure of the 
pier does not occur at a lower shear force. 
From Fig. 12c, the shear failure load will 
be 

T I .t + UP O p K (27) 

Equation 27 assumes that when 
incipient shear cracking develops, the 
shear stress is effectively uniformly 
distributed across the section, rather than 
distributed parabolically. In such 
circumstances, and considering the repeated 
load reversals expected under seismic 
loading, it is advisable to put T = 0 . 
Hence ° 

V = yP (29) 

Equations 26, 27 and 29 can be 
combined to find the critical aspect ratio 
for piers, to ensure shear failure does not 
occur. Thus 

where T q is the initial shear stress for 
zero axial load, and y is a friction 
coefficient. Testing of unreinforced 
masonry walls suggests appropriate values 
in the range 

0.1 < 

0.5 < 

T ^ 1.2MPa o 
y < 1.2 

(28) 

let 

yP > 0.85 f t ' 
m 

* p . t 

be the average axial compression stress on 
the pier. Then 
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^ > 1 (i 

0.85 f T ) 

(30) 

0.85 f ! 

m 
In the absence of 
the coefficient of 
being assessed it 
u = 0.5 be adopted. 

h 
T~ > 2(1 

information relating to 
friction for the wall 

is recommended that 
Thus 

0 . 8 5 % ' > < 3 1 > 

is the requirement to avoid shear failure. 
Consequently piers with aspect ratios 
greater than 2.0 should not be subject to 
shear failure. For piers with heavy axial 
load, lower aspect ratios may be 
satisfactory, since these rock at a 
relatively lower shear. 

It is recommended that the criterion 
of acceptable performance for piers be that 
shear failure cannot occur. Provided 
rocking limits the shear capacity of all 
piers at a given level, simple addition of 
the pier shear forces gives the total 
storey shear. 

It should be noted that for 
face-loading, the influence of wall 
openings is to increase the axial load on 
the piers, thus making them more stable. 
This aspect can easily be incorporated in 
the methodology developed above. 

CONCLUSIONS 

Examination of working stress and 
ultimate strength methods for assessing 
unreinforced masonry strength under seismic 
loading indicated that neither method could 
give an adequate representation of the 
dynamic response. An ultimate load 
appraisal incorporating energy 
consideration based on the calculated load-
deflection curves appears to have some 
merits for assessment of face-load response 
of masonry walls. In developing the 
methodology for analysis a number of 
conservative assumptions were made. The 
significance of these assumptions should be 
tested by dynamic analyses and testing, and 
where possible, by back-calibrating against 
results from earthquakes. 

The analyses produced the not 
unexpected result that upper floors of 
masonry buildings are likely to be more 
suspect than lower floors, since 
accelerations will be higher, and 
stabilising moments provided by gravity 
loads will be less. The analyses assumed 
that the walls are properly connected to 
the floor (and roof) system at all levels. 
Generally this will not be the case. Fig. 
13 shows a detail common in unreinforced 
masonry walls in New Zealand, where the 
floor beam rests on the wall in a small 
'pocket 1. Connection between wall and 
floor relies on friction. Because of the 
high accelerations possible, this is 
inadequate, and positive connection, 
preferably using anchor bolts connected to 
the floor beam and anchored against a 
bearing plate on the outside of the wall 
should be used. Examination of the 
methodology developed above for face-load 
response immediately shows the disasterous 
consequences of loosing support by 
connection to the roof or to an 
intermediate floor. 

No attempt has been made in this 
paper to discuss methods for upgrading the 
seismic capacity of walls where face-load 
or in-plane shear capacity is shown to be 
inadequate. These have been adequately 
covered in recent issues of the Bulletin. 

Finally it should be noted that 
comments presented in this paper assume 
good quality masonry properties, and would 
obviously not apply to walls with decayed 
mortar and loose bricks. For other 
structures, made from competent materiaIs, 
the methodology would indicate that our 
assessment of the capac i ty of existing 
unreinforced masonry buildings may have 
been somewhat Draconian in the past, and 
that less conservative assessments and 
requirements for strengthening may often be 
appropriate. It is hoped that this paper 
may stimulate discussion of some of these 
aspects. 

Bearing 
plate 

Anchor-
bolts 

4*. 

'4 WALL** 

Floor sheath 

*P o-

Plate bolted 
through floor beam 

Figure 13. Anchoring floor beams to walls. 
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APPENDIX 

Example of Unreinforced Masonry Building 
Response 

The five-storey unreinforced masonry 
building in Fig. 14a has perimeter walls 
220 mm thick. The 20 m long end walls 
support masses of 40 tonnes per floor 
(including self weight) and 20 tonnes at 
roof level. Use the design elastic 
response spectrum of Fig. 14b to estimate 
the natural in-plane period of the end 
walls, and hence the wall response 
accelerations. Assuming that flexible 
floors amplify the end wall accelerations 
by a factor of 2.0, calculate at what 
proportion of the design loading failure of 
a longitudinal face-loaded wall (see Fig. 
14a) would occur at levels 5, 3 and 1, 
assuming load applied to the wall by the 
roof is 10 kN/m, and load applied by each 
floor is 14 kN/m (self weight must be 
added) . 

Data : 

Face 
loaded 
wall 

Note : Wall thickness ,t=220mm 
E = 1.0 GPa 
f'm = S.OMPa 

[a) Structural configuration 

Elastic Modulus: 

Shear Modulus: 

0 (12 ( U 0.6 08 1.0 
T (sec ) 

(b) Design level elastic response spectrum 
for end walls 

Figure 14. Design example for 5 storey masonry building. 

Solution: 

In-plane response of end wall 

Moment of inertia: 
0.22 x 2 0 3 4 I = ^2 = 146.7 m 

1.0 GPa 

0 . 4 GPa 

Brick Density = 1900 kg/rrr 

Masonry comp. strength: 
f 8 = 5 MPa m 

Foundation rotational stiffness: 
9 

k Q = 8.5 x 10 Nm/radian 
Vertical accelerations: 

Assume 0.2 g in conj unction with 
horizontal acceleration (= 2/3 of 
peak ground hori zontal acceleration) . 

Natural period: For the equivalent I F 
model 

0 , 180 x 10 
2IT / =- sec, 

1.76 x 10' 

T = 0.635 sec. 
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From Fig. 14b, the response 
acceleration at the centre of mass = 0.44 g 
where g = acceleration due to gravity. 

Moment to cause in-place rocking 

Check stability under 0.8D + E 
(D = dead load, E = earthquake load). 

Restoring moment: 
M 0.8 (180 x 9.8 (T J)) kNm 

w 

0.8 P 

MNm 

0.85 f t 
m 

M -

0.8 x 180 x 9.8 
0.85 x 5000 x 0.22 

1.51 m 

1 . 4 1 ( ^ - I J S I ) 

= 13.1 MNm 

Overturning moment 

At 0.44 g response: 
M = 180 x 0.44 x 9.8 x 17 
o 

= 13.20 MNm 

Thus the wall starts to rock at 
13 1 

* ̂  x 100 = 99% of the design earthquake. 

Design level floor accelerations 

0.65g 1.30g 

0) 
E 
-2 L 

. o 
o 
u. 3 

he=17m 

1 1 1 1 — 

Shear-, 
wall 

— r — , — j — • 

0.U j 

/ 
/ / 

/ / 
/ / 

0.84 J< 

0 . 7 6 / 

Face loaded " 
wall. 
Accelerations 
amplified by . 
floor response 

/ / 
/ / y 

0 . 6 8 / 

™ . x „ a, i , i i i \ — i — 

0 0.2 OX 0.6 0.8 1.0 1.2 U 

Accelerat ion (xg) 

Figure 15. Response accelerations for example building. 

Stiffness of Wall 

The wall stiffness depends on the 
flexural, shear and foundation flexibility, 
and can be expressed as 

3EI 
1.2h 

6 
AG 

Area: 
A = 0.22 x 20 = 4.4 m 

Equivalent Single Degree of Freedom Model 

A simple simulation of the transverse 
response of the shear walls can be provided 
by a single mass mQ at equivalent height 
h e given by 

5 
m = E m. e ! l 

= 4 x 40 + 20 

i.e. m = 180 tonnes e • — — 

and 

E m . h. ' 
i i i e ~ £ nT h. 

i i 

20 x 2 5 2 + 40 (20 2 + 1 5 2 + 1Q 2 + 5 2) 
20 x 25 + 40 (20 + 15 + 10 + 5) 

i.e, 
h e = 17.0 m 

17" 1.2 x 17 17 
3 x 10 x 146.7 + 4.4 x 0.4 x 10 + 8.5 x 10 J 

i.e. k = 1.76 x 10 N/m 

Figure 15 shows the design-level shear 
wall accelerations at different heights, 
and the input accelerations for the 
face-loaded wall, which are 2.0 times the 
shear wall accelerations, except at ground 
floor level, where no amplification will 
occur. 

5th storey face-load response 

Referring to Fig. 8, 

P = 0.8 x 10 kN = 8kN/m, and 

W = 0.8 x 1.9 x 9.8 x 0.22 x 5 kN 

= 16.4 kN/m 

R = 8 + 8.2 = 16.2 kN/m 

Note that the 0.8 factor is to allow 
for vertical acceleration of 0.2 g. 
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From Eqn. 8: 

2.5 
\ 1 C O I 

at cracking: 

f 
cr 

Eqn. 13: 

M 

2 v16.2 

0.629 m 

2 x 16.2 

For a moment M 

ty = 16 ty 

2.5 M c r (e.g. Fig. 9c) 

cr 

0.22 0.147 MPa 

10.56 x 10 /m 

A = 16 A c r = 27.84 mm 

a i n = 1.26 (0.0917 - 0.75 x 0.02784) g 

= 0.0892 g 

For a moment M = 2.667 M (f = 6 f ) 
cr c cr 16.2 x 0.22 kNm "cr 6 

= 0.595 kNm 

Eqn. 15: Equivalent lateral load 

8 x 0.595 w, = in 25 

= 190 N/m 

Eqn. 16s Central displacement 

5 x 190 x 5 4 

a . in 

36 = 23.8 x 10" V m 

36 A = 62.6 mm 
cr 

1.26 (0.0978 - 0.75 x 0.0626) g 

0.0644 g 

384 x 1 0 9 x ° ' 2 2 ~ 12 

The moment-curvature and 
acceleration-displacement curves for 
level 5 are included in Figs. 16 and 17 
respectively. These figures also include 
curves for level 3 and level 1 based on 
similar calculations to the above, but with 
axial load levels of 

Eqn. 19: 

: 1.74 mm 

Curvature 

0.147 

Level 3: 

Level 1: 

R = 0.8 x 89.3 

R = 0.8 x 158.3 

71.4 kN/m 

126.6 kN/m 

= 0.662 x 10 /m 
10 x 0.22 

Now unit weight of wall 

= 1.9 x 9.8 x 2.2 = 4.10 kN/m 2 

Thus from Eqns. 10 and 24 the true 
acceleration for a displacement of 1.74 mm 
will be 

The increased load greatly improves 
the moment-curvature behaviour, but because 
of the greater P-A effect on central 
moments, the acceleration:d isplacement 
curves are not enhanced to the same degree. 

The areas under the three 
acceleration: displacement curves can be 
measured to give 

8 
4.10 x 25 

0.0447 g 

x 16.2 22 (1 - °^ 6 2 9)0.00174 

Level 5 

Level 3 

Level 1 

= 7.25 (mm x g units) 

= 14.8 (mm x g units) 

= 14.8 (mm x g units) 

Thus the top level wall will crack at 
the very low response acceleration of 
0.0447 g. 

For a moment M 

we have ty 

and A 

2 M c r (e.g. Fig. 9b) 

4 ty = 2.64 x 10~ 3/m 
rcr 

4 x 1.74 mm 

6.96 mm 

The initial stiffness of all three 
curves is the same, at 

k = 0.0259 g/mm 

Thus the equivalent elastic response 
acceleration to induce failure can be 
calculated using Eqn. 25. 

Level 5: a = ^2 kAc g e 5 ^ 

be 

a. in 

The corresponding acceleration will 

• 4.10 8x 25 X 1 6 . 2 ( % i i " d " 0.25) 0.00696] 

= 0.0861 g 

= J2 x 0.0259 x 7.25 g 

= 0.61 g 

Level 3 and 1: 

a = J2 x 0.0259 x 14.8 g 

= 0.875 g 
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These can be compared with the 
response accelerations corresponding to the 
design level earthquake, given in Fig. 15. 
For level 5, the average acceleration is 

1.04 + 1.30 

= 1.17 g 

Hence failure of the Level 5 wall is 
expected at 

0.61 x 100% = 52% 1.17 

of the design level earthquake. 

Design 
3 and 1 are 0 
Consequently 
not occur unt 
respectively 
earthquake. 
the level 5 
lower levels 
moments, and 
support. 

level accelerations 
.80 g and 0.49 g re 
failure at three 

il 109 percent and 
of the desi 

However, premature 
wall could induce 

due to reduced 
possible loss 

for levels 
spectively. 
levels will 
179 percent 
gn level 
failure of 

failures at 
stability 

of floor 

As expected, these calculations 
the top level of the wall to be 
vulnerable to damage from face 
accelerations. Although 
can only be considered 
general conclusions are 
methodology sound. In 
analyses indicate the sensitivity of 
results to simultaneous ver 
acceleration. For levels of ver 
acceleration higher than the 0.2 g as 
in this example, the failure la 
accelerations will be correspond 
lower. 

the calcula 
approximate 
valid, and 
particular 

show 
most 
-load 
tions 
, the 

the 
the 
the 

tical 
tical 
sumed 
teral 
ingly 

- I L I S I I I L _ J t i l l 

L 8 12 16 20 24 28 

Curvature ( x10"3/m) 

Figure 16. Moment-curvature relationships for face-
loading at different levels for example building. 
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Figure 17. Equivalent elastic response accelerations at 
different levels for example building. 


