Seismic hazard of the Canterbury region, New Zealand

New earthquake source model and methodology

  • Mark Stirling GNS Science, Lower Hutt, New Zealand
  • Matthew Gerstenberger GNS Science, Lower Hutt, New Zealand https://orcid.org/0000-0002-0392-7114
  • Nicola Litchfield GNS Science, Lower Hutt, New Zealand https://orcid.org/0000-0002-2053-3176
  • Graeme McVerry GNS Science, Lower Hutt, New Zealand
  • Warwick Smith GNS Science, Lower Hutt, New Zealand
  • Jarg Pettinga University of Canterbury, Christchurch, New Zealand
  • Philip Barnes 3National Institute of Water and Atmospheric Research, Wellington, New Zealand

Abstract

We present a new probabilistic seismic hazard model for the Canterbury region, the model superseding the earlier model of Stirling et al. (1999, 2001). The updated model incorporates new onshore and offshore fault data, new seismicity data, new methods for the earthquake source parameterisation of both datasets, and new methods for estimation of the expected levels of Modified Mercalli Intensity (MMI) across the region. While the overall regional pattern of estimated hazard has not changed since the earlier seismic hazard model, there have been slight reductions in hazard in some areas (western Canterbury Plains and eastern Southern Alps), coupled with significant increases in hazard in one area (immediately northeast of Kaikoura). The changes to estimated acceleration for the new versus older model serve to show the extent that major changes to a multidisciplinary source model may impact the final estimates of hazard, while the new MMI estimates show the added impact of a new methodology for calculating MMI hazard.

References

Abrahamson, N.A., and Silva, W.J. (1997). Empirical response spectral attenuation relationships for shallow crustal earthquakes. Seismological Research Letters 68, 94-127. DOI: https://doi.org/10.1785/gssrl.68.1.94

Aki, K., and Richards, P.G. (1980). Quantitative Seismology: Theory and Methods, W.H. Freeman, San Francisco, California.

Berryman, K.R., Beanland, S., Cooper, A.F., Cutten, H.N., Norris, R.J., Wood, P.R. (1992). The Alpine Fault, New Zealand: Variation in Quaternary structural style and geomorphic expression. Annales Tectonicae Suppliment to Volume 6: 126-163.

Berryman, K., Webb, T., Hill, N., Stirling, M., Rhoades, D., Beavan, J., Darby, D. (2002). Seismic loads on dams, Waitaki system. Earthquake Source Characterisation. Main report. GNS client report 2001/129.

Berryman, K.R. and Villamor, P.V. (2004). Surface rupture of the Poulter Fault in the 1929 March 9 Arthurs Pass earthquake, and redefinition of the Kakapo Fault, New Zealand Journal of Geology and Geophysics 47: 341-351. DOI: https://doi.org/10.1080/00288306.2004.9515060

Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58: 583-1606.

Cowan, H.A., (1991). the North Canterbury earthquake of 1 September, 1888. Journal of the Royal Society of New Zealand 21:1-12.

DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1990). Current plate motions. Geophysical Journal International 101: 425-478.

Grapes, R., Little, T., and Downes, G. (1998). Rupturing of the Awatere Fault during the 1848 October 16 Marlborough earthquake, New Zealand: historical and present day evidence. New Zealand Journal of Geology and Geophysics 41:387-399.

Gutenberg, B. and Richter, C.F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34: 185-188.

Hanks, T.C. and Bakun, W.H. (2002). A bilinear sourcescaling model for M-logA observations of continental earthquakes. Bulletin of the Seismological Society of America 92: 1841-1846.

Hanks, T.C. and Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research 84: 2348-2350.

Howard M. (2001). Holocene surface-rupturing earthquakes along the Porters Pass Fault. Unpublished MSc thesis, University of Canterbury, Christchurch, New Zealand.

Howard, M., Nicol, A., Campbell, J. Pettinga, J.R. (2005). Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 48: 59-74.

Langridge, R. M., Campbell, J., Hill, N. L., Pere, V., Pope, J., Pettinga, J., Estrada, B., Berryman, K. R. (2003). Paleoseismology and slip rate of the Conway segment of the Hope Fault at Greenburn Stream, South Island, New Zealand. Annals of Geophysics 46 (5): 1119-1139.

McVerry, G.H., Zhao, J.X., Abrahamson, N.A., Somerville, P.G. (2006). New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bulletin of the New Zealand Society of Earthquake Engineering 38(1), 1-58. DOI: https://doi.org/10.5459/bnzsee.39.1.1-58

Norris, R. J. and Cooper, A. F. (2001). Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology 23: 507-520.

Pettinga, J.R., Chamberlain, C.G., Yetton, M.D., Van Dissen, R.J. and Downes, G. (1998). Earthquake Hazard and Risk Assessment Study (Stage 1 – Part A); Earthquake Source Identification and Characterisation. Canterbury Regional Council Publication U98/10.

Pettinga, J.R., Yetton, M.D., Van Dissen, R.J. and Downes, G.D. (2001). Earthquake source identification and characterisation for the Canterbury region, South Island, New Zealand. Bulletin of the New Zealand Society of Earthquake Engineering 34(4), 282-317. DOI: https://doi.org/10.5459/bnzsee.34.4.282-317

Rhoades, D. A. and Van Dissen, R. J. (2003). Estimates of the time-varying hazard of rupture of the Alpine Fault, New Zealand, allowing for uncertainties. New Zealand Journal of Geology and Geophysics 46 (4): 479-488.

Smith, W.D., (2003). Earthquake hazard and risk assessment in New Zealand by Monte Carlo methods. Seismological Research Letters, 74, 298-304. DOI: https://doi.org/10.1785/gssrl.74.3.298

Standards New Zealand, (2004). Structural Design Actions Part 5 Earthquake Actions – New Zealand. Standard NZS1170.5:2004.

Stirling, M.W., Yetton, M., Pettinga, J., Berryman, K. and Downes, G. (1999). Probabilistic seismic hazard assessment and earthquake scenarios for the Canterbury Region, and historic earthquakes in Christchurch. GNS client report 1999/53.

Stirling, M.W., Pettinga, J., Berryman, K.R. and Yetton, M. (2001). Probabilistic seismic hazard assessment of the Canterbury region, New Zealand. Bulletin of the New Zealand Society of Earthquake Engineering 34, 318-334 DOI: https://doi.org/10.5459/bnzsee.34.4.318-334

Stirling, M.W., McVerry, G.H., Berryman, K.R. (2002). A new seismic hazard model for New Zealand. Bulletin of the Seismological Society of America. 92, 1878-1903. DOI: https://doi.org/10.1785/0120010156

Stirling, M.W. and Barnes, P.M. (2003). Seismic hazard model for New Zealand. Natural Hazards Update 4: 1.

Stirling, M.W., Gerstenberger, M., Litchfield, N.J., McVerry, G.H., Smith, W.D., Pettinga, J., and Barnes, P. (2007). Updated probabilistic seismic hazard assessment for the Canterbury region. GNS Science Consultancy Report 2007/232.

Stock, C. and Smith, E.G.C. (2002). Comparison of seismicity models generated by different kernel estimations. Bulletin of the Seismological Society of America 92, 913-922 DOI: https://doi.org/10.1785/0120000069

Sutherland, R., Norris, R.J. (1995). Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine Fault: evidence from Hokuri Creek, South Westland, New Zealand. New Zealand Journal of Geology and Geophysics 38: 419-430.

Sutherland, R., Berryman, K. R., Norris, R. J. (2006a). Displacement rate on the Alpine Fault determined from offset glacial landforms between Milford Sound and the Cascade Valley: implications for the kinematics and seismic hazard of southern New Zealand. Geological Society Of America Bulletin 118(3/4): 464-474. DOI: https://doi.org/10.1130/B25627.1

Sutherland, R., Eberhart-Philips, D., Harris, R.A., Stern, T., Beavan, J., Ellis, S., Henrys, S., Cox, S., Norris, R.J., Berryman, K.R., Towend, J., Bannister, S., Pettinga, J., Leitner, B., Wallace, L., Little, T.A., Cooper, A.F., Yetton, M., Stirling, M.W. (2006b). Do great earthquakes occur on the Alpine fault in central South Island, New Zealand? Geophysical Monograph, SIGHT. American Geophysical Union. DOI: https://doi.org/10.1029/175GM12

Villamor, P., Berryman, K., Webb, T., Stirling, M., McGinty, P., Downes, G., Harris, J., Litchfield, N., (2001). Waikato seismic loads - Task 2.1. Revision of seismic source characterisation. GNS client report 2001/59.

Wesnousky, S.G. (1986). Earthquakes, Quaternary faults and seismic hazard in California. Journal of Geophysical Research 91: 12587-12631.

Working Group of California Earthquake Probabilities, (1995). Seismic hazards in southern California, probable earthquakes 1994-2004. Bulletin of the Seismological Society of America 85, 379-439.

Yetton, M.D., Wells, A., and Traylen, N.J., (1998): The probability and consequences of the next Alpine Fault earthquake. EQC Research Report 95/193.

Youngs, R.R., Chiou, S.J., Silva, W.J. and Humphrey, J.R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes, Seismological Research Letters, 68(1), 58-73. DOI: https://doi.org/10.1785/gssrl.68.1.58

Published
2008-06-30
How to Cite
Stirling, M., Gerstenberger, M., Litchfield, N., McVerry, G., Smith, W., Pettinga, J., & Barnes, P. (2008). Seismic hazard of the Canterbury region, New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 41(2), 51-67. https://doi.org/10.5459/bnzsee.41.2.51-67
Section
Articles

Most read articles by the same author(s)